CO2 Signal Transduction in Plants
植物中的二氧化碳信号转导
基本信息
- 批准号:0918220
- 负责人:
- 金额:$ 79.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Stomata are the pores on the surface of leaves that 1) regulate the diffusion of carbon dioxide from the atmosphere into leaves for photosynthetic carbon fixation and 2) control the transpirational water loss of plants. Guard cells sense carbon dioxide concentration, water status, light and other environmental stimuli and integrate these to regulate stomatal apertures for optimization of carbon dioxide influx into plants, water loss and plant growth under diverse conditions. For example, elevated carbon dioxide concentrations in leaves cause stomatal closure, whereas reduced carbon dioxide concentrations result in stomatal opening. The concentration of atmospheric carbon dioxide is predicted to double within the present century: carbon dioxide at these increased levels is known to reduce the stomatal apertures of various plant species by up to 40%. This will have profound effects on global gas exchange between plants and the atmosphere and the efficiency of plant water use. However, relatively little is known about the molecular signal transduction mechanisms that mediate carbon dioxide-induced stomatal movements. Using the model plant Arabidopsis, the PI has shown that knock-out mutants in genes encoding carbonic anhydrase show an impaired carbon dioxide-induced stomatal movement response. The hypothesis that these proteins function in early carbon dioxide control of gas exchange regulation will be investigated. In this project, the genetic, molecular, cellular and physiological mechanisms by which these proteins mediate the stomatal response to carbon dioxide concentrations will be characterized.Broader Impacts: The P.I. will pursue outreach efforts through public forums and through research and career training and preparation of high school students and undergraduate students. Underrepresented minority students will be trained to pursue supervised independent research projects. In addition the P.I. is training and preparing post doctoral and graduate scientists for advanced independent careers in research, technology and science education. Understanding the molecular mechanisms by which carbon dioxide modulates stomatal conductance is fundamental to understanding the regulation of gas exchange between plants and the atmosphere, will help to predict effects of atmospheric carbon dioxide elevation on plants, and may also contribute to future engineering of water use efficiency or leaf heat stress avoidance in crop plants and plant carbon sinks in the face of the continuing atmospheric carbon dioxide rise and climate change.
气孔是植物叶片表面的气孔,1)调节二氧化碳从大气中扩散到叶片中进行光合作用固碳,2)控制植物的蒸腾水分损失。保护细胞感知二氧化碳浓度、水分状况、光和其他环境刺激,并整合这些刺激来调节气孔开度,以优化植物在不同条件下的二氧化碳流入、水分流失和植物生长。例如,叶片中二氧化碳浓度升高导致气孔关闭,而二氧化碳浓度降低导致气孔开放。据预测,大气中二氧化碳的浓度在本世纪内将翻一番:已知在这种增加水平下的二氧化碳会使各种植物的气孔孔径减少多达40%。这将对植物与大气之间的全球气体交换以及植物用水效率产生深远影响。然而,对二氧化碳诱导的气孔运动的分子信号转导机制知之甚少。利用模式植物拟南芥,PI已经证明,编码碳酸酐酶基因的敲除突变体显示出二氧化碳诱导的气孔运动反应受损。这些蛋白质在早期二氧化碳控制气体交换调节中起作用的假设将被研究。在这个项目中,这些蛋白质介导气孔对二氧化碳浓度反应的遗传、分子、细胞和生理机制将被表征。更广泛的影响:私家侦探将通过公共论坛、研究和职业培训以及高中生和本科生的准备来开展外联工作。少数族裔学生将接受培训,从事有监督的独立研究项目。此外,P.I.正在培训和准备博士后和研究生科学家在研究,技术和科学教育方面的高级独立职业。了解二氧化碳调节气孔导度的分子机制是理解植物与大气之间气体交换调节的基础,有助于预测大气二氧化碳升高对植物的影响,也可能有助于未来在面对持续的大气二氧化碳上升和气候变化的情况下,作物植物的水分利用效率或叶片热胁迫避免工程和植物碳汇。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julian Schroeder其他文献
真核型の脂質代謝経路は気孔の葉緑体形成 および気孔開閉応答に必須である
真核脂质代谢途径对于气孔叶绿体形成和气孔开/关反应至关重要。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
祢冝 淳太郎;宗正 晋太郎;宋 普錫;多田隈 遼亮; 楠見 健介;西田 生郎;Julian Schroeder;射場 厚 - 通讯作者:
射場 厚
Impurity Effect on Edge-modes of Graphene
杂质对石墨烯边缘模式的影响
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
祢冝淳太郎;楠見健介;宗正晋太郎;藤田麻友美;Julian Schroeder;射場 厚;河上裕;S. Oshima and M. Eto - 通讯作者:
S. Oshima and M. Eto
Edema is not a reliable diagnostic sign to exclude small brain metastases
水肿并不是排除小脑转移瘤的可靠诊断标志
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:3.7
- 作者:
T. Schneider;Jan Felix Kuhne;Paul Bittrich;Julian Schroeder;T. Magnus;M. Mohme;M. Grosser;G. Schoen;J. Fiehler;S. Siemonsen - 通讯作者:
S. Siemonsen
Pathway Reconstitution of Abscisic Acid Hormone Activation of SLAC1 Anion Channels via Novel ABA Signaling Protein Kinase
- DOI:
10.1016/j.bpj.2011.11.3003 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Dennis Brodsky;Benjamin Brandt;Shaowu Xue;Juntaro Negi;Koh Iba;Jaakko Kangasjarvi;Julian Schroeder - 通讯作者:
Julian Schroeder
真核型の脂質代謝経路は気孔の葉緑体形成およびCO2応答に必須である
真核脂质代谢途径对于气孔叶绿体形成和 CO2 响应至关重要
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
祢冝 淳太郎;宗正 晋太郎;宋 普錫;多田隈 遼亮;藤田 麻友美;楠見 健介;西田 生郎;Julian Schroeder;射場 厚 - 通讯作者:
射場 厚
Julian Schroeder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julian Schroeder', 18)}}的其他基金
Molecular Mechanisms of CO2 Signal Transduction in Plants
植物中CO2信号转导的分子机制
- 批准号:
1900567 - 财政年份:2019
- 资助金额:
$ 79.28万 - 项目类别:
Standard Grant
Molecular Mechanisms of Stomatal Carbon Dioxide Signal Transduction in Plants
植物气孔二氧化碳信号转导的分子机制
- 批准号:
1616236 - 财政年份:2016
- 资助金额:
$ 79.28万 - 项目类别:
Continuing Grant
Molecular Mechanisms of CO2 Signal Transduction in Plants
植物中CO2信号转导的分子机制
- 批准号:
1414339 - 财政年份:2014
- 资助金额:
$ 79.28万 - 项目类别:
Continuing Grant
IGERT Plant System Biology Interdisciplinary Graduate Training Program
IGERT植物系统生物学跨学科研究生培养项目
- 批准号:
0504645 - 财政年份:2005
- 资助金额:
$ 79.28万 - 项目类别:
Continuing Grant
Molecular Mechanisms of CO2 Signal Transduction
CO2信号转导的分子机制
- 批准号:
0417118 - 财政年份:2004
- 资助金额:
$ 79.28万 - 项目类别:
Continuing Grant
Conference on Specificity and Crosstalk in Plant Signal Transduction being held on January 22 - 27 2002: in Tahoe City, California.
植物信号转导中的特异性和串扰会议于 2002 年 1 月 22 日至 27 日在加利福尼亚州塔霍市举行。
- 批准号:
0123960 - 财政年份:2001
- 资助金额:
$ 79.28万 - 项目类别:
Continuing Grant
Ion Channel Regulation in Higher Plants
高等植物中的离子通道调节
- 批准号:
0077791 - 财政年份:2000
- 资助金额:
$ 79.28万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Voltage Dependent Calcium Channels in Higher Plants
美法合作研究:高等植物中电压依赖性钙通道
- 批准号:
9603438 - 财政年份:1997
- 资助金额:
$ 79.28万 - 项目类别:
Standard Grant
Ion Channel Regulation in Higher Plants
高等植物中的离子通道调节
- 批准号:
9506191 - 财政年份:1995
- 资助金额:
$ 79.28万 - 项目类别:
Continuing Grant
Presidential Young Investigator Award
总统青年研究员奖
- 批准号:
9157178 - 财政年份:1991
- 资助金额:
$ 79.28万 - 项目类别:
Continuing Grant
相似国自然基金
一种检测结核分枝杆菌抗原标志物的方法学研究——基于signal-on型电化学适体检测体系的构建及应用
- 批准号:81601856
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
Apoptosis signal-regulating kinase 1是七氟烷抑制小胶质细胞活化的关键分子靶点?
- 批准号:81301123
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Dissecting bacterial signal transduction
剖析细菌信号转导
- 批准号:
DP240102465 - 财政年份:2024
- 资助金额:
$ 79.28万 - 项目类别:
Discovery Projects
Conference: 2024 Photosensory Receptors and Signal Transduction GRC/GRS: Light-Dependent Molecular Mechanism, Cellular Response and Organismal Behavior
会议:2024光敏受体和信号转导GRC/GRS:光依赖性分子机制、细胞反应和生物体行为
- 批准号:
2402252 - 财政年份:2024
- 资助金额:
$ 79.28万 - 项目类别:
Standard Grant
2024 Signal Transduction in Engineered Extracellular Matrices Gordon Research Conference and Seminar; Southern New Hampshire University, Manchester, New Hampshire; 20-26 July 2024
2024年工程细胞外基质信号转导戈登研究会议及研讨会;
- 批准号:
2414497 - 财政年份:2024
- 资助金额:
$ 79.28万 - 项目类别:
Standard Grant
Development of tendon/ligament repair modulater using a chemically modified Tetra-PEG gel with signal transduction capability
使用具有信号转导能力的化学改性 Tetra-PEG 凝胶开发肌腱/韧带修复调节剂
- 批准号:
23K18325 - 财政年份:2023
- 资助金额:
$ 79.28万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
RII Track-4:NSF:Chloroplast retrograde signaling during plant immunity: integrating signal transduction and cellular dynamics
RII Track-4:NSF:植物免疫过程中叶绿体逆行信号传导:整合信号转导和细胞动力学
- 批准号:
2329266 - 财政年份:2023
- 资助金额:
$ 79.28万 - 项目类别:
Standard Grant
New insights into extracellular signal transduction
细胞外信号转导的新见解
- 批准号:
10566506 - 财政年份:2023
- 资助金额:
$ 79.28万 - 项目类别:
Regulation of cell fate via signal transduction switching by RNA phase separation
通过 RNA 相分离进行信号转导切换来调节细胞命运
- 批准号:
23K05645 - 财政年份:2023
- 资助金额:
$ 79.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analyses of the molecular mechanism underlying and the functional significance of developmental changes in intracellular signal transduction systems coupled to cardiac AT1 receptors.
分析与心脏 AT1 受体偶联的细胞内信号转导系统发育变化的分子机制和功能意义。
- 批准号:
23K06332 - 财政年份:2023
- 资助金额:
$ 79.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Signal Transduction in the Immune System Conference
免疫系统会议中的信号转导
- 批准号:
10683527 - 财政年份:2023
- 资助金额:
$ 79.28万 - 项目类别:
2023 Microbial Adhesion and Signal Transduction Gordon Research Conferences and Seminar
2023年微生物粘附和信号转导戈登研究会议和研讨会
- 批准号:
10666171 - 财政年份:2023
- 资助金额:
$ 79.28万 - 项目类别:














{{item.name}}会员




