Geometric and Functional Inequalities in Sub-Riemannian and Non-Smooth Dirichlet Spaces and Analysis of Random Rough Paths
亚黎曼和非光滑狄利克雷空间中的几何和函数不等式以及随机粗糙路径的分析
基本信息
- 批准号:1901315
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research project lies at the intersection of several areas of mathematics: analysis, geometry and probability theory. The principal investigator is particularly interested in the interplay between those fields and bringing tools from one field to another in order to open new paths of research, push the boundary of knowledge, and offer new point of views. Many of the investigated problems are motivated by the need to develop theories in spaces which are not regular (like fractals or rough metric spaces). Some of those problems are motivated by physics, engineering and mathematical finance. The principal investigator will also continue his synergistic activities including blogging, organizing conferences, giving lectures and mini-courses on recent advances, and mentoring graduate students.A first and most important part of the research activity evolves around the understanding of curvature bounds in spaces for which such notions have so far been elusive. In the class of sub-Riemannian manifolds, the principal investigator and his collaborators are interested in developing a comparison geometry with respect to constant curvature model spaces. This includes the study of sub-Laplacian comparison theorems, measure contraction properties and diameter estimates. In the class of Dirichlet spaces, the principal investigator and his collaborators are interested in isoperimetric inequalities and the related study of sets of finite perimeter and bounded variation functions. A second part of the research project deals with problems in the theory of random rough paths. Rough paths theory is a recent theory that allows to define integrals with respect to any Holder regular path. The principal investigator and his collaborators are interested in several properties of the solutions of differential equations driven by general Gaussian rough paths.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目位于数学的几个领域的交叉点:分析,几何和概率论。首席研究员对这些领域之间的相互作用特别感兴趣,并将工具从一个领域带到另一个领域,以开辟新的研究路径,推动知识的边界,并提供新的观点。许多调查的问题是出于需要发展理论的空间是不规则的(如分形或粗糙度量空间)。其中一些问题是由物理学、工程学和数理金融学引发的。主要研究者还将继续他的协同活动,包括博客,组织会议,讲座和迷你课程的最新进展,并指导研究生。研究活动的第一个也是最重要的部分是围绕理解曲率边界的空间,这些概念迄今为止一直难以捉摸。在次黎曼流形类中,主要研究者和他的合作者对发展常曲率模型空间的比较几何感兴趣。这包括研究次拉普拉斯比较定理,测量收缩性质和直径估计。在Dirichlet空间类中,主要研究者和他的合作者对等周不等式以及有限周长和有界变差函数集的相关研究感兴趣。研究项目的第二部分涉及随机粗糙路径理论中的问题。粗糙路径理论是一种新的理论,它允许定义关于任何保持器规则路径的积分。主要研究者和他的合作者对一般高斯粗糙路径驱动的微分方程解的几个性质感兴趣。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Subelliptic Heat Kernel of the Octonionic Anti-De Sitter Fibration
八元反德西特纤维的亚椭圆热核
- DOI:10.3842/sigma.2021.014
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Baudoin, Fabrice;Cho, Gunhee
- 通讯作者:Cho, Gunhee
Dirichlet fractional Gaussian fields on the Sierpinski gasket and their discrete graph approximations
- DOI:10.1016/j.spa.2023.05.005
- 发表时间:2022-01
- 期刊:
- 影响因子:1.4
- 作者:F. Baudoin;Li Chen
- 通讯作者:F. Baudoin;Li Chen
Quaternionic stochastic areas
四元数随机区域
- DOI:10.1016/j.spa.2020.09.002
- 发表时间:2021
- 期刊:
- 影响因子:1.4
- 作者:Baudoin, Fabrice;Demni, Nizar;Wang, Jing
- 通讯作者:Wang, Jing
Multiplier theorems via martingale transforms
通过鞅变换的乘数定理
- DOI:10.1016/j.jfa.2021.109188
- 发表时间:2021
- 期刊:
- 影响因子:1.7
- 作者:Bañuelos, Rodrigo;Baudoin, Fabrice;Chen, Li;Sire, Yannick
- 通讯作者:Sire, Yannick
Brownian Motions and Heat Kernel Lower Bounds on Kähler and Quaternion Kähler Manifolds
克勒流形和四元数克勒流形上的布朗运动和热核下界
- DOI:10.1093/imrn/rnaa199
- 发表时间:2020
- 期刊:
- 影响因子:1
- 作者:Baudoin, Fabrice;Yang, Guang
- 通讯作者:Yang, Guang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fabrice Baudoin其他文献
The Subelliptic Heat Kernels of the Quaternionic Hopf Fibration
四元Hopf纤维的亚椭圆热核
- DOI:
10.1007/s11118-014-9403-z - 发表时间:
2014 - 期刊:
- 影响因子:1.1
- 作者:
Fabrice Baudoin;Jing Wang - 通讯作者:
Jing Wang
Equations différentielles stochastiques conduites par des lacets dans les groupes de Carnot
卡诺群中的随机差分方程
- DOI:
10.1016/j.crma.2004.02.016 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Fabrice Baudoin - 通讯作者:
Fabrice Baudoin
Stochastic analysis on sub-Riemannian manifolds with transverse symmetries
- DOI:
10.1214/14-aop964 - 发表时间:
2014-02 - 期刊:
- 影响因子:2.3
- 作者:
Fabrice Baudoin - 通讯作者:
Fabrice Baudoin
A Note on Lower Bounds Estimates for the Neumann Eigenvalues of Manifolds with Positive Ricci Curvature
- DOI:
10.1007/s11118-011-9251-z - 发表时间:
2011-08-19 - 期刊:
- 影响因子:0.800
- 作者:
Fabrice Baudoin;Alice Vatamanelu - 通讯作者:
Alice Vatamanelu
Wasserstein contraction properties for hypoelliptic diffusions
亚椭圆扩散的 Wasserstein 收缩特性
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Fabrice Baudoin - 通讯作者:
Fabrice Baudoin
Fabrice Baudoin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fabrice Baudoin', 18)}}的其他基金
Analysis of Stochastic Differential Equations
随机微分方程分析
- 批准号:
0907326 - 财政年份:2009
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似国自然基金
Identification and quantification of primary phytoplankton functional types in the global oceans from hyperspectral ocean color remote sensing
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
- 批准号:30771013
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Random Matrices and Functional Inequalities on Spaces of Graphs
图空间上的随机矩阵和函数不等式
- 批准号:
2331037 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Functional, geometric and matrix inequalities and applications
函数、几何和矩阵不等式及其应用
- 批准号:
RGPIN-2021-03584 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
Functional, geometric and matrix inequalities and applications
函数、几何和矩阵不等式及其应用
- 批准号:
DGECR-2021-00395 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Discovery Launch Supplement
Stability of Functional and Geometric Inequalities and Applications
函数和几何不等式的稳定性及其应用
- 批准号:
2200886 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Random Matrices and Functional Inequalities on Spaces of Graphs
图空间上的随机矩阵和函数不等式
- 批准号:
2054666 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Functional, geometric and matrix inequalities and applications
函数、几何和矩阵不等式及其应用
- 批准号:
RGPIN-2021-03584 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
Variational problems associated with best constants of functional inequalities in a limiting case
极限情况下与函数不等式最佳常数相关的变分问题
- 批准号:
19K14568 - 财政年份:2019
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Stability of Functional and Geometric Inequalities and Applications
函数和几何不等式的稳定性及其应用
- 批准号:
1901427 - 财政年份:2019
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Functional inequalities via a logarithmic transformation and its application to PDE
通过对数变换的函数不等式及其在偏微分方程中的应用
- 批准号:
18K13441 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Variational approach to elliptic partial differential equations associated with critical functional inequalities
与临界函数不等式相关的椭圆偏微分方程的变分法
- 批准号:
16K21056 - 财政年份:2016
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Young Scientists (B)