Cohomology and Representations of Finite and Algebraic Groups with Applications
有限代数群的上同调和表示及其应用
基本信息
- 批准号:1901595
- 负责人:
- 金额:$ 31.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will involve the study of finite and algebraic groups and in particular their actions on linear spaces and varieties. Groups are one of the fundamental tools in mathematics and arise in many areas including analysis, geometry and number theory as well as in the study of symmetries in chemistry and physics. The classification of finite simple groups was completed in 2006 and has led to a revolution in using group theory to study other fields. The classification basically says that the finite simple groups are analogs of the simple Lie groups and so to understand them, one must study simple Lie and algebraic groups. The best way to understand and use group theory is to study the action of groups on different objects. One aspect of this project is to understand groups acting on Riemann surfaces (and their analog over finite fields). This will lead to a new fundamental understanding of basic objects including rational functions and should lead to advances in cryptography and fundamental problems in number theory. The utility of group theory has also been greatly expanded due to advances in computation. Another aspect of this project is to find useful presentations of the finite simple groups which will lead to more computational efficiency. A third important problem addressed in this project is to greatly generalize what is called the Tits alternative. This will lead to results showing the existence (and construction) of expander graphs. These are graphs that are highly connected relative to the number of edges in them. This has been of great importance in computer science. Graduate students will be trained through research. In particular, we plan to study the problem of producing strongly dense subgroups of semisimple algebraic groups and proving a generalization of the Tits alternative. This will give some new results about superstrong approximation in number theory and results on expander graphs. Earlier results of the PI, with Breuillard, Green, and Tao, will be generalized using new stronger methods. We also want to prove the conjecture that every finite simple group has a presentation with two generators and at most four relations. This should lead to advances in computational number theory. Deep results in group theory have led to major advances in basic problems about bijective polynomials over finite fields (viewed as mappings on a smooth projective curve) and has had applications to cryptography and solved problems over a century old. Another goal of the project is to completely classify monodromy groups of coverings of low genus Riemann surfaces leading to fundamental breakthroughs in number theory and also to classify monodromy groups of mappings from generic Riemann surfaces (first studied in Zariski's thesis). Finally, we want to classify generic stabilizers for simple algebraic groups in irreducible linear representations. This has been done in characteristic zero but new ideas are required in positive characteristic. This will have consequences for essential dimension and some special cases will fit into the program of Bhargava to solve interesting classification problems of algebraic families.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目将涉及有限群和代数群的研究,特别是它们在线性空间和变异上的作用。群是数学的基本工具之一,出现在许多领域,包括分析、几何和数论,以及化学和物理中的对称性研究。有限单群的分类于2006年完成,并引发了利用群论研究其他领域的一场革命。分类基本上是说,有限单群是单李群的类似物,因此要理解它们,必须研究单李群和代数群。理解和运用群论的最好方法是研究群在不同物体上的作用。这个项目的一个方面是了解作用在黎曼曲面上的群(以及它们在有限域上的模拟)。这将导致对包括有理函数在内的基本对象的新的基本理解,并将导致密码学和数论基本问题的进步。由于计算技术的进步,群论的应用也得到了极大的扩展。这个项目的另一个方面是找到有限简单群的有用表示,这将导致更高的计算效率。在这个项目中要解决的第三个重要问题是大大推广所谓的Tits替代方案。这将导致结果显示扩展图的存在性(和构造)。这些图是高度连接的相对于边的数量。这在计算机科学中是非常重要的。研究生将通过研究进行训练。特别地,我们计划研究半简单代数群的强密子群的产生问题,并证明Tits替代的推广。这将给出数论中关于超强逼近的一些新结果和关于展开图的一些新结果。布鲁拉德、格林和陶的早期PI结果将使用新的更强的方法进行推广。我们还想证明一个猜想,即每一个有限单群都有两个生成子和最多四个关系的表示。这将导致计算数论的进步。群论的深刻成果导致了有限域上双射多项式基本问题的重大进展(被视为光滑投影曲线上的映射),并已应用于密码学并解决了一个多世纪前的问题。该项目的另一个目标是对低格黎曼曲面覆盖的单群进行完全分类,从而在数论方面取得根本性突破,并对一般黎曼曲面的映射的单群进行分类(在Zariski的论文中首次研究)。最后,我们想要对不可约线性表示中的简单代数群的一般稳定器进行分类。这已经在特征零中完成了,但在正特征中需要新的想法。这将对基本维数产生影响,一些特殊情况将适用于巴尔加瓦的程序,以解决代数族的有趣分类问题。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generic Stabilizers for Simple Algebraic Groups
- DOI:10.1307/mmj/20217216
- 发表时间:2021-05
- 期刊:
- 影响因子:0.9
- 作者:S. Garibaldi;R. Guralnick
- 通讯作者:S. Garibaldi;R. Guralnick
GENERICALLY FREE REPRESENTATIONS III: EXTREMELY BAD CHARACTERISTIC
一般免费的表现 III:极其糟糕的特征
- DOI:10.1007/s00031-020-09590-4
- 发表时间:2020
- 期刊:
- 影响因子:0.7
- 作者:Garibaldi, S.;Guralnick, R.
- 通讯作者:Guralnick, R.
The spread of a finite group
- DOI:10.4007/annals.2021.193.2.5
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Timothy C. Burness;R. Guralnick;Scott Harper
- 通讯作者:Timothy C. Burness;R. Guralnick;Scott Harper
Topological generation of exceptional algebraic groups
特殊代数群的拓扑生成
- DOI:10.1016/j.aim.2020.107177
- 发表时间:2020
- 期刊:
- 影响因子:1.7
- 作者:Burness, Timothy C.;Gerhardt, Spencer;Guralnick, Robert M.
- 通讯作者:Guralnick, Robert M.
GENERICALLY FREE REPRESENTATIONS II: IRREDUCIBLE REPRESENTATIONS
一般自由表示 II:不可约表示
- DOI:10.1007/s00031-020-09591-3
- 发表时间:2020
- 期刊:
- 影响因子:0.7
- 作者:Garibaldi, S.;Guralnick, R.
- 通讯作者:Guralnick, R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Guralnick其他文献
Modular characters, hall subgroups, and normal complements
- DOI:
10.1007/s13398-024-01690-0 - 发表时间:
2024-12-27 - 期刊:
- 影响因子:1.600
- 作者:
Robert Guralnick;Gabriel Navarro - 通讯作者:
Gabriel Navarro
Reimagining species on the move across space and time
- DOI:
10.1016/j.tree.2025.03.015 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:17.300
- 作者:
Alexa L. Fredston;Morgan W. Tingley;Montague H.C. Neate-Clegg;Luke J. Evans;Laura H. Antão;Natalie C. Ban;I-Ching Chen;Yi-Wen Chen;Lise Comte;David P. Edwards;Birgitta Evengard;Belen Fadrique;Sophie H. Falkeis;Robert Guralnick;David H. Klinges;Jonas J. Lembrechts;Jonathan Lenoir;Juliano Palacios-Abrantes;Aníbal Pauchard;Gretta Pecl;Brett R. Scheffers - 通讯作者:
Brett R. Scheffers
Primitive monodromy groups of genus at most two
- DOI:
10.1016/j.jalgebra.2014.06.020 - 发表时间:
2014-11-01 - 期刊:
- 影响因子:
- 作者:
Daniel Frohardt;Robert Guralnick;Kay Magaard - 通讯作者:
Kay Magaard
On rational and concise words
- DOI:
10.1016/j.jalgebra.2015.02.003 - 发表时间:
2015-05-01 - 期刊:
- 影响因子:
- 作者:
Robert Guralnick;Pavel Shumyatsky - 通讯作者:
Pavel Shumyatsky
The automorphism groups of a family of maximal curves
- DOI:
10.1016/j.jalgebra.2012.03.036 - 发表时间:
2012-07-01 - 期刊:
- 影响因子:
- 作者:
Robert Guralnick;Beth Malmskog;Rachel Pries - 通讯作者:
Rachel Pries
Robert Guralnick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Guralnick', 18)}}的其他基金
IntBIO Collaborative Research: Assessing drivers of the nitrogen-fixing symbiosis at continental scales
IntBIO 合作研究:评估大陆尺度固氮共生的驱动因素
- 批准号:
2316267 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Collaborative Research: Ranges: Building Capacity to Extend Mammal Specimens from Western North America
合作研究:范围:建设能力以扩展北美西部的哺乳动物标本
- 批准号:
2228392 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
Collaborative Research: Phenobase: Community, infrastructure, and data for global-scale analyses of plant phenology
合作研究:Phenobase:用于全球范围植物物候分析的社区、基础设施和数据
- 批准号:
2223512 - 财政年份:2022
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
Collaborative Research: CIBR: Leaping the Specimen Digitization Gap: Connecting Novel Tools, Machine Learning and Public Participation to Label Digitization Efforts
合作研究:CIBR:跨越标本数字化差距:将新工具、机器学习和公众参与与标签数字化工作联系起来
- 批准号:
2027234 - 财政年份:2021
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Collaborative Research: LightningBug, An Integrated Pipeline to Overcome The Biodiversity Digitization Gap
合作研究:LightningBug,克服生物多样性数字化差距的综合管道
- 批准号:
2104152 - 财政年份:2021
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
Collaborative Research: Origins and drivers of extinction of Caribbean Avifauna
合作研究:加勒比鸟类灭绝的起源和驱动因素
- 批准号:
2033905 - 财政年份:2021
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
Collaborative Research: Genealogy of Odonata (GEODE): Dispersal and color as drivers of 300 million years of global dragonfly evolution
合作研究:蜻蜓目 (GEODE) 谱系:传播和颜色是 3 亿年全球蜻蜓进化的驱动力
- 批准号:
2002457 - 财政年份:2020
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
IIBR RoL: Collaborative Research: A Rules Of Life Engine (RoLE) Model to Uncover Fundamental Processes Governing Biodiversity
IIBR RoL:协作研究:揭示生物多样性基本过程的生命规则引擎 (RoLE) 模型
- 批准号:
1927286 - 财政年份:2019
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
- 批准号:
1759898 - 财政年份:2018
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Cohomology, Representations, and Coverings of Curves
曲线的上同调、表示和覆盖
- 批准号:
1600056 - 财政年份:2016
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
相似海外基金
Representations of Finite Groups and Applications
有限群的表示及其应用
- 批准号:
2200850 - 财政年份:2022
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
Representations of finite reductive groups, character sheaves and theory of total positivity
有限约简群的表示、特征轮和总正性理论
- 批准号:
2153741 - 财政年份:2022
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
CAREER: Three-manifolds with finite volume, their geometry, representations, and complexity
职业:有限体积的三流形、它们的几何形状、表示形式和复杂性
- 批准号:
2142487 - 财政年份:2022
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
RUI: Galois Automorphisms and Local-Global Properties of Representations of Finite Groups
RUI:有限群表示的伽罗瓦自同构和局部全局性质
- 批准号:
2100912 - 财政年份:2021
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Rank functions on triangulated categories, homotopy theory and representations of finite groups
三角范畴的秩函数、同伦理论和有限群的表示
- 批准号:
EP/T030771/1 - 财政年份:2021
- 资助金额:
$ 31.5万 - 项目类别:
Research Grant
Summer School for Young Researchers on Representations of Finite Groups
有限群表示青年研究人员暑期学校
- 批准号:
2001077 - 财政年份:2020
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Rank functions on triangulated categories, homotopy theory and representations of finite groups
三角范畴的秩函数、同伦理论和有限群的表示
- 批准号:
EP/T029455/1 - 财政年份:2020
- 资助金额:
$ 31.5万 - 项目类别:
Research Grant
Construction of relatively cuspidal representations of finite groups of Lie type
有限李型群的相对尖头表示的构造
- 批准号:
540389-2019 - 财政年份:2019
- 资助金额:
$ 31.5万 - 项目类别:
University Undergraduate Student Research Awards
Centralizer for the tensor representations of finite groups and diagram algebras
有限群和图代数张量表示的中心化器
- 批准号:
19K03398 - 财政年份:2019
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representations of finite groups and Auslander-Reiten quivers
有限群和 Auslander-Reiten 箭袋的表示
- 批准号:
19K03451 - 财政年份:2019
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)