Representations of Finite Groups and Applications

有限群的表示及其应用

基本信息

  • 批准号:
    2200850
  • 负责人:
  • 金额:
    $ 44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

The main area of research in this proposal is the representation theory of finite groups. The concept of a group in mathematics grew out of the notion of symmetry. The symmetries of an object in nature or science are encoded by a group, which carries a lot of important information about the structure of the object itself. Group representation theory allows one to study groups via their actions on vector spaces which model the ways they arise in the real world. It has fascinated mathematicians for more than a century, and has had many important applications in quantum mechanics, the theory of elementary particles, coding theory, and cryptography, and is expected to continue to play an important role in the modern world of computers and digital communications. This research will contribute to advances in the understanding and applications of representation theory of finite groups. Student involvement will be a scientifically important component of the project.This project focuses on several problems in the representation theory of finite groups and its applications. Many of these problems come up naturally in the group representation theory. Others are motivated by various applications. The PI will study several global-local problems, including the conjectures of McKay, Alperin, and Brauer, and some other conjectures which generalize classical results in representation theory of finite groups. The PI will also continue his long-term project to develop a theory of character level and to establish strong bounds on character values of finite groups of Lie type, and to classify modular representations of finite quasisimple groups of low dimension or with special properties. He will then apply the results to achieve significant progress on a number of applications, including local systems and their monodromy groups, Aschbacher's conjecture on subgroup lattices, random walks on Cayley and McKay graphs and representation varieties of Fuchsian groups, word map distributions and Thompson's conjecture for simple groups, Miyamoto's problem with applications to vertex operator algebras, and bounds on cohomology groups and presentations of finite quasisimple groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该提案的主要研究领域是有限群的表示理论。数学中群的概念是从对称性的概念发展而来的。在自然界或科学中,物体的对称性是由一个群编码的,这个群携带着许多关于物体本身结构的重要信息。群表示理论允许人们通过它们在向量空间上的行为来研究群,向量空间模拟了它们在真实的世界中出现的方式。它已经吸引了数学家超过世纪,并在量子力学,基本粒子理论,编码理论和密码学中有许多重要的应用,预计将继续在现代计算机和数字通信世界中发挥重要作用。这些研究将有助于对有限群表示理论的理解和应用。学生的参与将是该项目的一个重要的科学组成部分。该项目集中在有限群的表示理论及其应用中的几个问题。许多这样的问题在群表示论中自然出现。其他人则是出于各种应用的动机。PI将研究几个全局-局部问题,包括McKay,Alperin和Brauer的结构,以及其他一些结构,这些结构推广了有限群表示论中的经典结果。PI还将继续他的长期项目,以发展一个理论的字符水平和建立强界的字符值有限群的李型,并分类模块表示有限quasisimple群的低维或特殊性质。然后,他将应用结果,以实现一些应用程序的重大进展,包括本地系统和他们的monodromy组,Aschbacher的猜想子群格,随机游走的凯莱和麦凯图和代表品种的Fuchsian组,字地图分布和汤普森的猜想简单的群体,宫本的问题与应用程序的顶点算子代数,这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Character bounds for regular semisimple elements and asymptotic results on Thompson’s conjecture
正则半单元的字符界和 Thompson 猜想的渐近结果
  • DOI:
    10.1007/s00209-022-03193-3
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Larsen, Michael;Taylor, Jay;Tiep, Pham Huu
  • 通讯作者:
    Tiep, Pham Huu
Odd-degree Rational Irreducible Characters
奇次有理不可约特征
  • DOI:
    10.1007/s40306-021-00446-x
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Tiep, Pham Huu;Tong-Viet, Hung P.
  • 通讯作者:
    Tong-Viet, Hung P.
Degrees and fields of values of irreducible characters
不可约特征的值的度和域
  • DOI:
    10.1007/s40879-023-00633-0
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Hung, Nguyen Ngoc;Tiep, Pham Huu
  • 通讯作者:
    Tiep, Pham Huu
Primes and degrees of Brauer characters
A question of Katz and Tiep on representations of finite general unitary groups
Katz 和 Tiep 关于有限一般酉群表示的问题
  • DOI:
    10.1080/00927872.2022.2033253
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Tae Young, Lee
  • 通讯作者:
    Tae Young, Lee
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pham Tiep其他文献

Pham Tiep的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pham Tiep', 18)}}的其他基金

Groups Representations and Applications: New Perspectives
群体表示和应用:新视角
  • 批准号:
    1907670
  • 财政年份:
    2019
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
Group Representations and Applications
团体代表和申请
  • 批准号:
    1840702
  • 财政年份:
    2018
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Representations of Finite Groups and Applications
有限群的表示及其应用
  • 批准号:
    1839351
  • 财政年份:
    2018
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Group Representations and Applications
团体代表和申请
  • 批准号:
    1665014
  • 财政年份:
    2017
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Finite Simple Groups: Thirty Years of the Atlas and Beyond
有限简单群:阿特拉斯三十年及以后
  • 批准号:
    1455798
  • 财政年份:
    2015
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
Representations of Finite Groups and Applications
有限群的表示及其应用
  • 批准号:
    1201374
  • 财政年份:
    2012
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Representations of Finite Groups and Applications
有限群的表示及其应用
  • 批准号:
    0964957
  • 财政年份:
    2009
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Group Representations and Applications
团体代表和申请
  • 批准号:
    0901241
  • 财政年份:
    2009
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Conference "Group Representations and Combinatorics"
会议“群表示和组合学”
  • 批准号:
    0735168
  • 财政年份:
    2007
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
Representations of Finite Groups and Applications
有限群的表示及其应用
  • 批准号:
    0600967
  • 财政年份:
    2006
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant

相似国自然基金

Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Representations of finite reductive groups, character sheaves and theory of total positivity
有限约简群的表示、特征轮和总正性理论
  • 批准号:
    2153741
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
RUI: Galois Automorphisms and Local-Global Properties of Representations of Finite Groups
RUI:有限群表示的伽罗瓦自同构和局部全局性质
  • 批准号:
    2100912
  • 财政年份:
    2021
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
Rank functions on triangulated categories, homotopy theory and representations of finite groups
三角范畴的秩函数、同伦理论和有限群的表示
  • 批准号:
    EP/T030771/1
  • 财政年份:
    2021
  • 资助金额:
    $ 44万
  • 项目类别:
    Research Grant
Summer School for Young Researchers on Representations of Finite Groups
有限群表示青年研究人员暑期学校
  • 批准号:
    2001077
  • 财政年份:
    2020
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
Rank functions on triangulated categories, homotopy theory and representations of finite groups
三角范畴的秩函数、同伦理论和有限群的表示
  • 批准号:
    EP/T029455/1
  • 财政年份:
    2020
  • 资助金额:
    $ 44万
  • 项目类别:
    Research Grant
Construction of relatively cuspidal representations of finite groups of Lie type
有限李型群的相对尖头表示的构造
  • 批准号:
    540389-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 44万
  • 项目类别:
    University Undergraduate Student Research Awards
Centralizer for the tensor representations of finite groups and diagram algebras
有限群和图代数张量表示的中心化器
  • 批准号:
    19K03398
  • 财政年份:
    2019
  • 资助金额:
    $ 44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cohomology and Representations of Finite and Algebraic Groups with Applications
有限代数群的上同调和表示及其应用
  • 批准号:
    1901595
  • 财政年份:
    2019
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Representations of finite groups and Auslander-Reiten quivers
有限群和 Auslander-Reiten 箭袋的表示
  • 批准号:
    19K03451
  • 财政年份:
    2019
  • 资助金额:
    $ 44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Categorical study for representations of finite groups
有限群表示的分类研究
  • 批准号:
    19K03457
  • 财政年份:
    2019
  • 资助金额:
    $ 44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了