Quantum Communication Circuits on a CMOS Chip (QC4)
CMOS 芯片上的量子通信电路 (QC4)
基本信息
- 批准号:1901844
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The emergence of Internet of Things increasingly involves transmission of confidential and secret data such as financial transactions, medical files, and data related to national security. These applications have increased the need for privacy and authentication in future data networks. Traditional encryption tools rely for their security on computational intractability of mathematical procedures such as factoring large numbers, and are therefore, in principle vulnerable. This vulnerability is absent in quantum optics technologies that have been explored during the past few decades. However, in current approaches, quantum networks exploit the most obvious independent quantum point-to-point transmission links between different nodes, making scaling up quantum networks increasingly complicated. Moreover, the technology for quantum networks uses realizations based on free space optics and/or hybrid systems combining free space with fiber optics. These approaches, however, do not scale; they are bulky, and cannot handle the high level of complexity in a network with a large number of nodes. The vision of this project is to develop quantum communication circuits on a silicon photonic chip to meet the societal needs of future quantum networks, exploiting multiple entangled and single-photons carrying qubits. Specifically, this proposal is focused on the experimental realization and theoretical analysis of quantum material sources, devices and circuits manufactured with CMOS technology for scalable quantum secret sharing network. The proposed research on exploiting multiple energy-entangled and single qubit carrying photons will enable the construction of next generation quantum networks with unprecedented impact on cybersecurity. The project will provide scientific training in quantum optics for students at graduate and undergraduate levels as well as serve as a platform for outreach, education and collaborative efforts with middle and high schools. Technical description To meet the needs of next generation quantum networks for cybersecurity, this project is focused on experimental realization and analysis of a quantum secret sharing network utilizing nodes capable of generating time-bin entangled triplets via a down-conversion nonlinear process in the silicon nitride material platform. The generated multiple photons are used to prepare high-fidelity heralded single photons, Greenberger-Horne-Zeilinger (GHZ) time-bin entangled states and remote entanglement states in support of a true network topology in contrast to commonly used two-photon entanglement supporting point-to-point links. To construct such a network we will develop novel quantum optical devices and components on a chip exploiting CMOS processes with use of fabrication foundries. Therefore, the goal of this proposal is to carry out a comprehensive approach in construction and experimental validation of quantum communication devices, components and circuits on a CMOS compatible chip for quantum secret sharing network. The specific objectives include analysis, design, fabrication, testing and demonstration of (i) generation of triplet time-bin entangled photons to create high fidelity heralded single photons, (ii) preparation of GHZ states, (iii) preparation of remote entanglement states on a chip, (iii) demonstration of quantum detection circuit on a chip, and (iv) demonstration of quantum relay circuit on a chip. The proposed research is transformative in nature as it will not only mark the first step toward integration of inexpensive and compact quantum communication circuits on a chip, but also offer a route to practical realization of quantum communication network systems in support of future societal need in cybersecurity. The project will provide scientific training in quantum optics and quantum communications for students at graduate and undergraduate levels as well as serve as a basis for outreach, education and collaborative efforts with middle and high schools. Engagement of students of diverse ethnicity, gender and economic backgrounds in Science, Technology, Engineering and Mathematics (STEM) will be continued via the ongoing RET, REU, and COSMOS activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物联网的出现越来越多地涉及机密和秘密数据的传输,如金融交易,医疗档案和与国家安全相关的数据。 这些应用增加了未来数据网络中对隐私和身份验证的需求。传统的加密工具的安全性依赖于数学过程的计算困难性,例如大数的因数分解,因此原则上是脆弱的。在过去几十年中探索的量子光学技术中,这种脆弱性是不存在的。然而,在目前的方法中,量子网络利用不同节点之间最明显的独立量子点对点传输链路,使得量子网络的规模越来越复杂。此外,量子网络的技术使用基于自由空间光学和/或将自由空间与光纤相结合的混合系统的实现。 然而,这些方法不能扩展;它们体积庞大,并且无法处理具有大量节点的网络中的高复杂性。 该项目的愿景是在硅光子芯片上开发量子通信电路,以满足未来量子网络的社会需求,利用多个纠缠和单光子携带量子比特。具体而言,该方案的重点是利用CMOS技术制造的量子材料源、器件和电路的实验实现和理论分析,用于可扩展的量子秘密共享网络。拟议中的利用多能量纠缠和单个量子比特携带光子的研究将使下一代量子网络的建设成为可能,对网络安全产生前所未有的影响。该项目将为研究生和本科生提供量子光学方面的科学培训,并作为与初中和高中开展外联、教育和合作的平台。为了满足下一代量子网络对网络安全的需求,该项目专注于实验实现和分析量子秘密共享网络,该网络利用能够在氮化硅材料平台上通过下转换非线性过程产生时间仓纠缠三重态的节点。 所产生的多个光子用于制备高保真预示单光子、Greenberger-Horne-Zeilinger(GHZ)时间仓纠缠态和远程纠缠态,以支持真正的网络拓扑结构,而不是常用的支持点对点链路的双光子纠缠。 为了构建这样一个网络,我们将开发新的量子光学器件和芯片上的组件,利用CMOS工艺与制造厂的使用。因此,本提案的目标是在用于量子秘密共享网络的CMOS兼容芯片上进行量子通信设备、组件和电路的构建和实验验证的综合方法。具体目标包括分析,设计,制造,测试和演示(i)生成三重态时间仓纠缠光子以创建高保真预示单光子,(ii)GHZ态的制备,(iii)在芯片上制备远程纠缠态,(iii)在芯片上演示量子检测电路,以及(iv)在芯片上演示量子中继电路。这项研究具有变革性,因为它不仅标志着在芯片上集成廉价紧凑的量子通信电路的第一步,而且还为量子通信网络系统的实际实现提供了一条途径,以支持未来社会对网络安全的需求。 该项目将为研究生和本科生提供量子光学和量子通信方面的科学培训,并作为与初中和高中开展外联、教育和合作的基础。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SERS-based ssDNA composition analysis with inhomogeneous peak broadening and reservoir computing
- DOI:10.1063/5.0075528
- 发表时间:2022-01
- 期刊:
- 影响因子:4
- 作者:Phuong H. L. Nguyen;Shimon Rubin;P. Sarangi;Piya Pal;Y. Fainman
- 通讯作者:Phuong H. L. Nguyen;Shimon Rubin;P. Sarangi;Piya Pal;Y. Fainman
The effect of DNA bases permutation on surface-enhanced Raman scattering spectrum
- DOI:10.1515/nanoph-2021-0021
- 发表时间:2021-02
- 期刊:
- 影响因子:7.5
- 作者:Shimon Rubin;Phuong H. L. Nguyen;Y. Fainman
- 通讯作者:Shimon Rubin;Phuong H. L. Nguyen;Y. Fainman
Thermo-optic properties of silicon-rich silicon nitride for on-chip applications
- DOI:10.1364/oe.396969
- 发表时间:2020-08-17
- 期刊:
- 影响因子:3.8
- 作者:Nejadriahi, Hani;Friedman, Alex;Yu, Paul
- 通讯作者:Yu, Paul
Subnanometer imaging and controlled dynamical patterning of thermocapillary driven deformation of thin liquid films
- DOI:10.1038/s41377-019-0190-6
- 发表时间:2019-08
- 期刊:
- 影响因子:0
- 作者:Shimon Rubin;Brandon Hong;Y. Fainman
- 通讯作者:Shimon Rubin;Brandon Hong;Y. Fainman
A Non-Mechanical Multi-Wavelength Integrated Photonic Beam Steering System
- DOI:10.1109/jlt.2020.3034580
- 发表时间:2021-06
- 期刊:
- 影响因子:4.7
- 作者:Naif Alshamrani;A. Grieco;A. Friedman;Karl A. Johnson;Myun-Sik Kim;F. Floris;P. O'Brien;Y. Fainman
- 通讯作者:Naif Alshamrani;A. Grieco;A. Friedman;Karl A. Johnson;Myun-Sik Kim;F. Floris;P. O'Brien;Y. Fainman
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yeshaiahu Fainman其他文献
Laser-induced selective local patterning of vanadium oxide phases
- DOI:
10.1007/s42114-025-01246-9 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:21.800
- 作者:
Junjie Li;Henry Navarro;Alexandre Pofelski;Pavel Salev;Ralph El Hage;Erbin Qiu;Yimei Zhu;Yeshaiahu Fainman;Ivan K. Schuller - 通讯作者:
Ivan K. Schuller
Système et procédé pour un état lié dans des sources laser en continuum
连续激光源的系统和程序
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Boubacar Kante;Yeshaiahu Fainman;Thomas Lepetit;Ashok Kodigala;Qingyi Gu - 通讯作者:
Qingyi Gu
Advantages of Non-degenerate Two-photon Microscopy for Deep Tissue Imaging
- DOI:
10.1016/j.bpj.2019.11.1752 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Sanaz Sadegh;Mu-Han Yang;Christopher Ferri;Martin Thunemann;Anna Devor;Yeshaiahu Fainman - 通讯作者:
Yeshaiahu Fainman
Yeshaiahu Fainman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yeshaiahu Fainman', 18)}}的其他基金
PIC: Hybrid Photonic-Electronic Reprogrammable Reservoir Computing with Polarization Modes-enhanced Dimensionality
PIC:具有偏振模式增强维数的混合光子-电子可重编程储层计算
- 批准号:
2217453 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
ASCENT: Collaborative Research: Programmable Photonic Computation Accelerators (PPCA)
ASCENT:协作研究:可编程光子计算加速器(PPCA)
- 批准号:
2023730 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
PIC: Mobile in Situ Fourier Transform Spectrometer on a Chip
PIC:芯片上的移动原位傅立叶变换光谱仪
- 批准号:
1807890 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CREWS: Chemical Resonance Excitation Wavelength Selection for Label-Free DNA Analysis
CREWS:无标记 DNA 分析的化学共振激发波长选择
- 批准号:
1704085 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Synthesis of Second-Order Optical Nonlinearities with Electronic Metamaterials
用电子超材料合成二阶光学非线性
- 批准号:
1707641 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Generation and Manipulation of New Sources in 20-60 micron on a Chip
合作研究:EAGER:在芯片上生成和操纵 20-60 微米的新光源
- 批准号:
1644647 - 财政年份:2016
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
E2CDA: Type I: Collaborative Research: Energy Efficient Computing with Chip-Based Photonics
E2CDA:类型 I:协作研究:基于芯片的光子学的节能计算
- 批准号:
1640227 - 财政年份:2016
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Exploring the Frontier of Photonic Device Size, Speed, and Efficiency Limits with Gain-enhanced Multifuncional Metamaterials
利用增益增强型多功能超材料探索光子器件尺寸、速度和效率限制的前沿
- 批准号:
1507146 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Fundamental Investigations of Nanolaser Physics: Statistical Properties, Thermal Stability, and Temporal Dynamics of Light Emission
纳米激光物理的基础研究:统计特性、热稳定性和光发射的时间动力学
- 批准号:
1405234 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
EAGER: Cartridge lab-on-chip (CLOC) for Mobile Health
EAGER:用于移动医疗的盒式芯片实验室 (CLOC)
- 批准号:
1445158 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似海外基金
Intelligent Modeling and Design of Medium to Large Scale Microwave and Millimeter-Wave Circuits for Communication Systems
通信系统中大规模微波和毫米波电路的智能建模和设计
- 批准号:
RGPIN-2017-05872 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Model-guided design of bacterial interspecies interactions and trans-organismic communication in living intercellular circuits
合作研究:活体细胞间回路中细菌种间相互作用和跨有机体通讯的模型引导设计
- 批准号:
2211040 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Model-guided design of bacterial interspecies interactions and trans-organismic communication in living intercellular circuits
合作研究:活体细胞间回路中细菌种间相互作用和跨有机体通讯的模型引导设计
- 批准号:
2211039 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Circuits and systems for energy-efficient high-speed wireline communication beyond 200 gigabits per second
用于每秒超过 200 吉比特的节能高速有线通信的电路和系统
- 批准号:
545675-2020 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Postgraduate Scholarships - Doctoral
Architectures and Integrated Circuits for Power-Efficient Communication Systems and Beyond
适用于高能效通信系统及其他系统的架构和集成电路
- 批准号:
RGPIN-2017-06240 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Influence of internal state on communication in distributed neuronal circuits
内部状态对分布式神经元回路通信的影响
- 批准号:
10294673 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Theory of circuit quantum gravity using superconducting quantum circuits and its application to quantum space-time communication
基于超导量子电路的电路量子引力理论及其在量子时空通信中的应用
- 批准号:
21J22333 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Analysis and Development of Optimal Circuit Structure for Small Volume Wireless Communication Circuits for IoT
物联网小体积无线通信电路最优电路结构的分析与开发
- 批准号:
21K21284 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Integration of brain circuits for the control and plasticity of vocal communication signals
整合脑电路以控制声音通信信号并使其可塑性
- 批准号:
RGPIN-2016-05016 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Circuits and systems for energy-efficient high-speed wireline communication beyond 200 gigabits per second
用于每秒超过 200 吉比特的节能高速有线通信的电路和系统
- 批准号:
545675-2020 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Postgraduate Scholarships - Doctoral














{{item.name}}会员




