Collaborative Research: EAGER: Generation and Manipulation of New Sources in 20-60 micron on a Chip

合作研究:EAGER:在芯片上生成和操纵 20-60 微米的新光源

基本信息

  • 批准号:
    1644647
  • 负责人:
  • 金额:
    $ 14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

Abstract: (Non-technical)A laser radiation with long wavelengths in the range has never been demonstrated even though it has a wide range of applications. Its usefulness makes its generation, manipulation and detection a critical task faced by the photonics community. There has not been any research on the guided wave approach to the generation, manipulation and detection of radiation in the long wavelength range of 20-60 micrometers, and therefore we feel that the proposed research will help to start this new and exciting field. To achieve the overarching goal on creating long wavelength radiation, its manipulation and detection on a chip, we aim to identify materials and construct optical difference-frequency generating devices, develop compact laser sources for difference-frequency generation, and construct integrated long wavelength signal processors on a chip. The ability to generate, manipulate and detect long wavelength radiation on a chip will have a significant impact on numerous applications including absorption spectroscopy, imaging and optical communications. The proposed research will not only advance the basic science and technology of chip-scale integrated far infrared radiation systems, but will also enable exploration of novel applications in biology, chemistry, security, physics, and astronomy. The project will provide scientific training for students at graduate and undergraduate levels as well as contribute to outreach, education and collaborative efforts with San Diego middle and high schools. Through our relationships with the Sweetwater, Preuss, and High Tech High Schools, we will continue to successfully engage students of diverse ethnicity, gender and economic backgrounds in Science, Technology, Engineering and Mathematics (STEM). (Technical) Radiation with wavelengths ranging from 20 to 60 micrometers has a wide range of applications in such fields as biology, chemistry, security, physics, and astronomy. Its usefulness makes its generation, manipulation and detection a critical task faced by the photonics community. The state of the art of the technology in this spectral range of optical radiation is in embryonic state with the current research focused on free space realizations. The generation of long wavelength radiation typically exploits frequency mixing using near-infrared laser sources and produces power levels of about tens of nanowatts, limited by phase matching and corresponding interaction length for free space implementations. Moreover, efficient detection of long wavelength radiation also imposes a critical challenge. It is evident that guided wave realizations on a chip will have a huge impact on advancing photonics in long wavelength spectral range because it allows engineering hybrid material structures with large nonlinearities and transparency, which together with engineering phase matching will enable efficient generation, transmission and detection of long wavelength radiation. The overall goal of this proposal is to establish chip-scale integrated technology for generation, manipulation and detection of optical radiation in the wavelength range of 20-60 micrometers. Specifically, our objectives aim to comprehensively understand and experimentally demonstrate: (1) various material platforms with properties necessary for transmission and efficient difference-frequency generation compatible with chip-scale realizations, (2) characteristics of the down-selected materials, including their nonlinear damage thresholds, (3) compact laser sources for difference-frequency generation in selected materials, and (4) designs and fabrication methodology of guided wave configurations with engineered phase matching for efficient generation and detection of the long wavelength radiation. The proposed chip-scale integrated long wavelength processors will have a significant impact on numerous applications including absorption spectroscopy, imaging and optical communications. The proposed research will not only advance the basic science and technology of chip-scale integrated far infrared systems, but will also enable exploration of novel applications in biology, chemistry, security, physics, and astronomy.
摘要:(非技术性)尽管具有广泛的应用,但从未证明具有该范围内的长波长的激光辐射。它的有用性使得它的生成,操作和检测成为光子学社区面临的关键任务。目前还没有任何关于导波方法在20-60微米的长波长范围内产生、操纵和检测辐射的研究,因此我们认为拟议的研究将有助于启动这一令人兴奋的新领域。 为了实现在芯片上产生长波长辐射、其操纵和检测的总体目标,我们的目标是识别材料并构建光学差频产生设备,开发用于差频产生的紧凑型激光源,并在芯片上构建集成的长波长信号处理器。 在芯片上产生、操纵和检测长波长辐射的能力将对包括吸收光谱、成像和光通信在内的许多应用产生重大影响。这项研究不仅将推进芯片级集成远红外辐射系统的基础科学和技术,还将探索生物学、化学、安全、物理学和天文学等领域的新应用。该项目将为研究生和本科生提供科学培训,并促进与圣地亚哥初中和高中的外联、教育和合作。通过我们与斯威特沃特,普鲁斯和高科技高中的关系,我们将继续成功地吸引不同种族,性别和经济背景的学生在科学,技术,工程和数学(干)。(技术)波长在20至60微米之间的辐射在生物学、化学、安全、物理学和天文学等领域有着广泛的应用。它的有用性使得它的生成,操作和检测成为光子学社区面临的关键任务。在光辐射的这个光谱范围内的技术的最新水平处于萌芽状态,目前的研究集中在自由空间实现上。 长波长辐射的产生通常利用使用近红外激光源的频率混合,并产生约数十瓦的功率水平,这受到自由空间实现方式的相位匹配和对应的相互作用长度的限制。 此外,对长波长辐射的有效检测也提出了关键的挑战。很明显,在芯片上实现导波将对推进长波长光谱范围内的光子学产生巨大影响,因为它允许工程混合材料结构具有大的非线性和透明度,这与工程相位匹配一起将使长波长辐射的有效产生,传输和检测成为可能。 该提案的总体目标是建立芯片级集成技术,用于产生、操纵和检测波长范围为20-60微米的光辐射。具体来说,我们的目标是全面理解和实验证明:(1)各种材料平台,其具有与芯片级实现兼容的传输和有效差频产生所需的性质,(2)向下选择的材料的特性,包括它们的非线性损伤阈值,(3)用于在所选材料中产生差频的紧凑激光源,以及(4)具有工程相位匹配的导波配置的设计和制造方法,用于长波长辐射的有效生成和检测。 所提出的芯片级集成长波长处理器将对包括吸收光谱、成像和光通信在内的众多应用产生重大影响。拟议的研究不仅将推进芯片级集成远红外系统的基础科学和技术,还将使生物学,化学,安全,物理学和天文学的新应用探索成为可能。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Observation of second-harmonic generation in silicon nitride waveguides through bulk nonlinearities
通过体非线性观察氮化硅波导中二次谐波的产生
  • DOI:
    10.1364/oe.24.016920
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    MATTHEW W. PUCKETT, RAJAT SHARMA
  • 通讯作者:
    MATTHEW W. PUCKETT, RAJAT SHARMA
Synthesis of second-order nonlinearities in dielectric-semiconductor-dielectric metamaterials
  • DOI:
    10.1063/1.4978640
  • 发表时间:
    2017-03-13
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Lin, Hung-Hsi;Yang, Mu-Han;Fainman, Yeshaiahu
  • 通讯作者:
    Fainman, Yeshaiahu
Integrated Space-Division Multiplexer for Application to Data Center Networks
Magnetically controllable silicon microring with ferrofluid cladding
  • DOI:
    10.1364/ol.41.005576
  • 发表时间:
    2016-12-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    El Amili, A.;Souza, M. C. M. M.;Fainman, Y.
  • 通讯作者:
    Fainman, Y.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yeshaiahu Fainman其他文献

Laser-induced selective local patterning of vanadium oxide phases
  • DOI:
    10.1007/s42114-025-01246-9
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    21.800
  • 作者:
    Junjie Li;Henry Navarro;Alexandre Pofelski;Pavel Salev;Ralph El Hage;Erbin Qiu;Yimei Zhu;Yeshaiahu Fainman;Ivan K. Schuller
  • 通讯作者:
    Ivan K. Schuller
Système et procédé pour un état lié dans des sources laser en continuum
连续激光源的系统和程序
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Boubacar Kante;Yeshaiahu Fainman;Thomas Lepetit;Ashok Kodigala;Qingyi Gu
  • 通讯作者:
    Qingyi Gu
Advantages of Non-degenerate Two-photon Microscopy for Deep Tissue Imaging
  • DOI:
    10.1016/j.bpj.2019.11.1752
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Sanaz Sadegh;Mu-Han Yang;Christopher Ferri;Martin Thunemann;Anna Devor;Yeshaiahu Fainman
  • 通讯作者:
    Yeshaiahu Fainman

Yeshaiahu Fainman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yeshaiahu Fainman', 18)}}的其他基金

PIC: Hybrid Photonic-Electronic Reprogrammable Reservoir Computing with Polarization Modes-enhanced Dimensionality
PIC:具有偏振模式增强维数的混合光子-电子可重编程储层计算
  • 批准号:
    2217453
  • 财政年份:
    2023
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
ASCENT: Collaborative Research: Programmable Photonic Computation Accelerators (PPCA)
ASCENT:协作研究:可编程光子计算加速器(PPCA)
  • 批准号:
    2023730
  • 财政年份:
    2020
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Quantum Communication Circuits on a CMOS Chip (QC4)
CMOS 芯片上的量子通信电路 (QC4)
  • 批准号:
    1901844
  • 财政年份:
    2019
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
PIC: Mobile in Situ Fourier Transform Spectrometer on a Chip
PIC:芯片上的移动原位傅立叶变换光谱仪
  • 批准号:
    1807890
  • 财政年份:
    2018
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
CREWS: Chemical Resonance Excitation Wavelength Selection for Label-Free DNA Analysis
CREWS:无标记 DNA 分析的化学共振激发波长选择
  • 批准号:
    1704085
  • 财政年份:
    2017
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Synthesis of Second-Order Optical Nonlinearities with Electronic Metamaterials
用电子超材料合成二阶光学非线性
  • 批准号:
    1707641
  • 财政年份:
    2017
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
E2CDA: Type I: Collaborative Research: Energy Efficient Computing with Chip-Based Photonics
E2CDA:类型 I:协作研究:基于芯片的光子学的节能计算
  • 批准号:
    1640227
  • 财政年份:
    2016
  • 资助金额:
    $ 14万
  • 项目类别:
    Continuing Grant
Exploring the Frontier of Photonic Device Size, Speed, and Efficiency Limits with Gain-enhanced Multifuncional Metamaterials
利用增益增强型多功能超材料探索光子器件尺寸、速度和效率限制的前沿
  • 批准号:
    1507146
  • 财政年份:
    2015
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Fundamental Investigations of Nanolaser Physics: Statistical Properties, Thermal Stability, and Temporal Dynamics of Light Emission
纳米激光物理的基础研究:统计特性、热稳定性和光发射的时间动力学
  • 批准号:
    1405234
  • 财政年份:
    2014
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
EAGER: Cartridge lab-on-chip (CLOC) for Mobile Health
EAGER:用于移动医疗的盒式芯片实验室 ​​(CLOC)
  • 批准号:
    1445158
  • 财政年份:
    2014
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了