ASCENT: Collaborative Research: Programmable Photonic Computation Accelerators (PPCA)
ASCENT:协作研究:可编程光子计算加速器(PPCA)
基本信息
- 批准号:2023730
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As the Fourth Industrial Revolution is approaching, large-scale computing is becoming more demanding and popular than ever. However, the performance of conventional electronic microprocessors has almost reached their limits for device speed, on-chip density and power consumption and will not be able to continue sustaining the upcoming data explosion. Optical computation can be extremely fast and with low-power requirements compared to electronics, for its intrinsic high speed, large bandwidth, and unlimited parallelism, which are critical to ease the data traffic associated with applications where artificial intelligence decisions need to be made in real time. Novel approaches towards programmable computations are required for data-driven training of modern artificial intelligence. In this project, the investigators will leverage the state-of-the-art integrated photonics technology to develop an innovative programmable photonic computation accelerators (PPCA), accelerating the computation speed and reducing the cost and energy consumption to sustain long term performance requirements for machine learning. This research is closely integrated with the existing educational activities, providing both undergraduate and graduate students with the opportunity to participate in cutting-edge science and technology in an innovative way. The investigators also provide educational outreach activities in integrated photonic devices, machine learning, and computer algorithms to promote the interests and participations of K-12 students and broaden the participations from underrepresented groups. Technical description: With funding from the Electrical, Communications and Cyber Systems (ECCS) Division, the investigators from the University of Pennsylvania and University of California, San Diego are developing a disruptive system-level integrated nanophotonic circuits – Programmable Photonic Computation Accelerators (PPCA) – through active control via strategic engineering of quantum symmetry, to perform real-time programmable mathematical operations and implement machine learning algorithms. Unique symmetry-driven geometries will be explored to deliver novel topological photonic components required for matrix multiplication, which can be dynamically programmed by flexible control of spatial-variant optical modulation. On the developed programmable photonic computation accelerator platform, different iconic machine learning algorithms will be performed to demonstrate optical machine learning for the first time and test its corresponding speed and fidelity. The investigators have highly complementary expertise on active photonic circuits, integrated devices, systems, and packaging, as well as computation and machine learning, which will be actively synergized, enabling a paradigmatic shift towards system-level integration of large-scale photonic computation accelerators. If successful, the innovative programmable photonic computation accelerators could be applied in the domains which demand extreme speed, energy efficiency, parallelism, significant complexity, and high scalability on an ultra-compact footprint, and full programmability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着第四次工业革命的临近,大规模计算变得比以往任何时候都更加需要和流行。然而,传统电子微处理器的性能几乎已经达到了设备速度、片上密度和功耗的极限,将无法继续维持即将到来的数据爆炸。与电子产品相比,光学计算速度非常快,功耗要求很低,因为它具有固有的高速、大带宽和无限并行性,这对于缓解与需要实时做出人工智能决策的应用程序相关的数据流量至关重要。现代人工智能的数据驱动训练需要新的可编程计算方法。在这个项目中,研究人员将利用最先进的集成光子学技术开发一种创新的可编程光子计算加速器(PPCA),加快计算速度,降低成本和能耗,以维持机器学习的长期性能要求。这项研究与现有的教育活动紧密结合,为本科生和研究生提供了以创新的方式参与前沿科学技术的机会。研究人员还提供集成光子设备,机器学习和计算机算法的教育外展活动,以促进K-12学生的兴趣和参与,并扩大代表性不足群体的参与。技术描述:在电子、通信和网络系统(ECCS)部门的资助下,宾夕法尼亚大学和加州大学圣地亚哥分校的研究人员正在开发一种颠覆性的系统级集成纳米光子电路——可编程光子计算加速器(PPCA)——通过量子对称战略工程的主动控制,执行实时可编程数学运算和实现机器学习算法。将探索独特的对称驱动几何结构,以提供矩阵乘法所需的新型拓扑光子元件,这些元件可以通过灵活控制空间可变光学调制来动态编程。在开发的可编程光子计算加速器平台上,将执行不同的标志性机器学习算法,首次演示光学机器学习,并测试其相应的速度和保真度。研究人员在有源光子电路,集成器件,系统和封装以及计算和机器学习方面具有高度互补的专业知识,这些专业知识将积极协同,使大规模光子计算加速器的系统级集成成为可能。如果成功,创新的可编程光子计算加速器可以应用于需要极高速度、能效、并行性、显著复杂性、超紧凑足迹和完全可编程性的高可扩展性的领域。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Band-limited photodetection of temporal coherence
时间相干性的带限光电检测
- DOI:10.1364/oe.462445
- 发表时间:2023
- 期刊:
- 影响因子:3.8
- 作者:Chen, Zijun;Fainman, Yeshaiahu
- 通讯作者:Fainman, Yeshaiahu
Universal photonics tomography
通用光子断层扫描
- DOI:10.1364/oe.454497
- 发表时间:2022
- 期刊:
- 影响因子:3.8
- 作者:Gaur, Prabhav;Grieco, Andrew;Alshamrani, Naif;Almutairi, Dhaifallah;Fainman, Yeshaiahu
- 通讯作者:Fainman, Yeshaiahu
Optical bistability in PECVD silicon-rich nitride
PECVD 富硅氮化物的光学双稳定性
- DOI:10.1364/oe.473928
- 发表时间:2022
- 期刊:
- 影响因子:3.8
- 作者:Friedman, Alex;Belogolovskii, Dmitrii;Grieco, Andrew;Fainman, Yeshaiahu
- 通讯作者:Fainman, Yeshaiahu
SERS-based ssDNA composition analysis with inhomogeneous peak broadening and reservoir computing
- DOI:10.1063/5.0075528
- 发表时间:2022-01
- 期刊:
- 影响因子:4
- 作者:Phuong H. L. Nguyen;Shimon Rubin;P. Sarangi;Piya Pal;Y. Fainman
- 通讯作者:Phuong H. L. Nguyen;Shimon Rubin;P. Sarangi;Piya Pal;Y. Fainman
Extraction of Coupling Coefficients of Directional Couplers Using Resonance Splitting
- DOI:10.1109/jphot.2022.3221487
- 发表时间:2022-12
- 期刊:
- 影响因子:2.4
- 作者:Ang Li;Y. Fainman
- 通讯作者:Ang Li;Y. Fainman
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yeshaiahu Fainman其他文献
Laser-induced selective local patterning of vanadium oxide phases
- DOI:
10.1007/s42114-025-01246-9 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:21.800
- 作者:
Junjie Li;Henry Navarro;Alexandre Pofelski;Pavel Salev;Ralph El Hage;Erbin Qiu;Yimei Zhu;Yeshaiahu Fainman;Ivan K. Schuller - 通讯作者:
Ivan K. Schuller
Système et procédé pour un état lié dans des sources laser en continuum
连续激光源的系统和程序
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Boubacar Kante;Yeshaiahu Fainman;Thomas Lepetit;Ashok Kodigala;Qingyi Gu - 通讯作者:
Qingyi Gu
Advantages of Non-degenerate Two-photon Microscopy for Deep Tissue Imaging
- DOI:
10.1016/j.bpj.2019.11.1752 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Sanaz Sadegh;Mu-Han Yang;Christopher Ferri;Martin Thunemann;Anna Devor;Yeshaiahu Fainman - 通讯作者:
Yeshaiahu Fainman
Yeshaiahu Fainman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yeshaiahu Fainman', 18)}}的其他基金
PIC: Hybrid Photonic-Electronic Reprogrammable Reservoir Computing with Polarization Modes-enhanced Dimensionality
PIC:具有偏振模式增强维数的混合光子-电子可重编程储层计算
- 批准号:
2217453 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Quantum Communication Circuits on a CMOS Chip (QC4)
CMOS 芯片上的量子通信电路 (QC4)
- 批准号:
1901844 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
PIC: Mobile in Situ Fourier Transform Spectrometer on a Chip
PIC:芯片上的移动原位傅立叶变换光谱仪
- 批准号:
1807890 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CREWS: Chemical Resonance Excitation Wavelength Selection for Label-Free DNA Analysis
CREWS:无标记 DNA 分析的化学共振激发波长选择
- 批准号:
1704085 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Synthesis of Second-Order Optical Nonlinearities with Electronic Metamaterials
用电子超材料合成二阶光学非线性
- 批准号:
1707641 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Generation and Manipulation of New Sources in 20-60 micron on a Chip
合作研究:EAGER:在芯片上生成和操纵 20-60 微米的新光源
- 批准号:
1644647 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
E2CDA: Type I: Collaborative Research: Energy Efficient Computing with Chip-Based Photonics
E2CDA:类型 I:协作研究:基于芯片的光子学的节能计算
- 批准号:
1640227 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Exploring the Frontier of Photonic Device Size, Speed, and Efficiency Limits with Gain-enhanced Multifuncional Metamaterials
利用增益增强型多功能超材料探索光子器件尺寸、速度和效率限制的前沿
- 批准号:
1507146 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Fundamental Investigations of Nanolaser Physics: Statistical Properties, Thermal Stability, and Temporal Dynamics of Light Emission
纳米激光物理的基础研究:统计特性、热稳定性和光发射的时间动力学
- 批准号:
1405234 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
EAGER: Cartridge lab-on-chip (CLOC) for Mobile Health
EAGER:用于移动医疗的盒式芯片实验室 (CLOC)
- 批准号:
1445158 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: SWIFT: Context-aware Spectrum Coexistence dEsign aNd implemenTation in satellite bands (ASCENT)
合作研究:SWIFT:卫星频段的上下文感知频谱共存设计和实施 (ASCENT)
- 批准号:
2245910 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: How faithfully are melt embayments wedded to magma ascent?
合作研究:熔体海湾与岩浆上升的关系有多忠实?
- 批准号:
2221896 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: Context-aware Spectrum Coexistence dEsign aNd implemenTation in satellite bands (ASCENT)
合作研究:SWIFT:卫星频段的上下文感知频谱共存设计和实施 (ASCENT)
- 批准号:
2128540 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: Context-aware Spectrum Coexistence dEsign aNd implemenTation in satellite bands (ASCENT)
合作研究:SWIFT:卫星频段的上下文感知频谱共存设计和实施 (ASCENT)
- 批准号:
2128584 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: Volatile sources, eruption triggers, and magma ascent rates for mafic alkaline magmas at Nyiragongo and Nyamulagira volcanoes, DR Congo, East African Rift
合作研究:刚果民主共和国、东非大裂谷尼拉贡戈火山和尼亚穆拉吉拉火山的镁铁质碱性岩浆的挥发性来源、喷发触发因素和岩浆上升速率
- 批准号:
2043067 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: Volatile sources, eruption triggers, and magma ascent rates for mafic alkaline magmas at Nyiragongo and Nyamulagira volcanoes, DR Congo, East African Rift
合作研究:刚果民主共和国、东非大裂谷尼拉贡戈火山和尼亚穆拉吉拉火山的镁铁质碱性岩浆的挥发性来源、喷发触发因素和岩浆上升速率
- 批准号:
2043066 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
ASCENT: Collaborative Research: Scaling Distributed AI Systems based on Universal Optical I/O
ASCENT:协作研究:基于通用光学 I/O 扩展分布式人工智能系统
- 批准号:
2023468 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
ASCENT: Collaborative Research: Scaling Distributed AI Systems based on Universal Optical I/O
ASCENT:协作研究:基于通用光学 I/O 扩展分布式人工智能系统
- 批准号:
2023861 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: How faithfully are melt embayments wedded to magma ascent?
合作研究:熔体海湾与岩浆上升的关系有多忠实?
- 批准号:
2015424 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
ASCENT: Collaborative Research: Scaling Distributed AI Systems based on Universal Optical I/O
ASCENT:协作研究:基于通用光学 I/O 扩展分布式人工智能系统
- 批准号:
2023751 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant














{{item.name}}会员




