Exploring the Frontier of Photonic Device Size, Speed, and Efficiency Limits with Gain-enhanced Multifuncional Metamaterials
利用增益增强型多功能超材料探索光子器件尺寸、速度和效率限制的前沿
基本信息
- 批准号:1507146
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract title: Exploring the Frontier of Photonic Device Size, Speed, and Efficiency Limits with Gain-enhanced Multifuncional Metamaterials Abstract: (Non-technical)Metal-dielectric composites hold significant promise as the building blocks of next-generation information, communication, and sensing systems. The combination of metals and dielectrics offers unprecedentedly small volumes, fast speeds, and enhancements to nonlinear effects in photonic devices such as light sources, waveguides, and switches. Generally, however, the incorporation of metals necessarily increases the energy dissipated as heat in such devices, consequently reducing the energy carried by useful signals. We propose to create metal-dielectric and metal-semiconductor composites with the primary goal of demonstrating optical signal transmission without energy loss. Semiconducting materials may be engineered to emit and absorb light over a very broad color range, and their properties may be tuned by external electronics. We aim to develop the theoretical underpinning and experimental knowledge on the role of active semiconductors in enabling propagation of optical signals without loss of energy, while still retaining the small footprint and fast operation of the metal-dielectric-based photonic devices. We additionally plan to explore, both theoretically and experimentally, the enhancement of nonlinear effects in such devices, due both to the local enhancement of electromagnetic fields and to the cascaded nonlinearities present at the interfaces between the constituent materials. (Technical) Hyperbolic metamaterials offer unique and enhanced functionalities compared to conventional optical materials. For example, hyperbolic metamaterials exhibit highly localized electric fields in deeply subwavelength volumes, enabling field-enhanced nonlinear polarization, as well as broadband Purcell enhancement of the spontaneous emission rate. By introducing external strain, the band-structure of the constituent materials can be further modified, enabling multi-scale engineering of the hyperbolic metamaterials's linear and nonlinear optical responses. Unfortunately, hyperbolic metamaterials typically suffer from considerable Ohmic losses, preventing their applicability to practical devices. To overcome this deficiency, optical gain may be introduced for improved device performance. To date, most research on gain-compensated metamaterials has focused on dye molecules as a gain medium because they are easy to incorporate in proof-of-concept experiments and can be accurately modeled using simple two-level systems. In contrast, inorganic semiconductors and their heterostructures are attractive as gain media because their absorption/emission resonances may be engineered from terahertz to ultraviolet frequencies. Additionally, semiconductor hyperbolic metamaterials may be electrically injected with charge carriers, allowing for a more direct and reliable control of their functionality. And lastly, inorganic semiconductors offer distinct advantages over dyes in terms of robustness, lifetime, and integrability with guided wave devices. The overall goal of this proposal is to advance the science and technology of Gain Enhanced Multifunctional Metamaterials. Specifically, we aim to comprehensively understand and experimentally demonstrate: (1) lossless propagation in waveguide-based Gain Enhanced Multifunctional Metamaterials, (2) field-enhanced second- and third-order nonlinear effects in Gain Enhanced Multifunctional Metamaterials, and (3) strain-enhanced nonlinear effects in Gain Enhanced Multifunctional Metamaterials, all mediated by semiconductor gain. For specificity, we focus on the near-infrared part of the spectrum, but we stress that the lessons learned from our work may easily be extended to ultraviolet and terahertz frequencies alike. Gain Enhanced Multifunctional Metamaterials offer an avenue for achieving unprecedented nonlinear conversion efficiencies with lossless signal transmission. Due to their extremely small footprint and potentially fast operation, Gain Enhanced Multifunctional Metamaterials will become strong candidates for integrated nonlinear devices of future photonic circuits. The proposed research will not only advance the basic science and technology of active semiconductor metamaterials, but will also set an example for the investigation of physical phenomena in which the self-consistent treatment of electronic, electromagnetic, and mechanical interaction becomes crucially important. We anticipate that Gain Enhanced Multifunctional Metamaterials will find applications in data- and telecommunications, graph-processing, computation, biomedical imaging, and chemical sensing.
摘要标题:利用增益增强型多功能超材料探索光子器件尺寸、速度和效率限制的前沿摘要:(非技术性)金属介电复合材料作为下一代信息、通信和传感系统的构建模块具有重大前景。 金属和电介质的组合提供了前所未有的小体积、快速速度,并增强了光源、波导和开关等光子器件中的非线性效应。 然而,一般来说,金属的结合必然会增加此类设备中以热量形式耗散的能量,从而减少有用信号携带的能量。我们建议创建金属-电介质和金属-半导体复合材料,其主要目标是演示没有能量损失的光信号传输。 半导体材料可以被设计为发射和吸收非常宽的颜色范围内的光,并且它们的特性可以通过外部电子设备来调节。我们的目标是开发有关有源半导体在实现光信号传播而不损失能量方面的作用的理论基础和实验知识,同时仍然保留基于金属电介质的光子器件的小占地面积和快速运行。我们还计划从理论上和实验上探索此类器件中非线性效应的增强,这是由于电磁场的局部增强以及构成材料之间界面处存在的级联非线性所致。 (技术)与传统光学材料相比,双曲超材料提供独特且增强的功能。 例如,双曲超材料在深亚波长体积中表现出高度局域化的电场,从而实现场增强的非线性极化,以及自发发射率的宽带珀塞尔增强。 通过引入外部应变,可以进一步修改组成材料的能带结构,从而实现双曲超材料的线性和非线性光学响应的多尺度工程。 不幸的是,双曲超材料通常会遭受相当大的欧姆损耗,从而阻碍了它们在实际设备中的应用。为了克服这个缺陷,可以引入光学增益以改进器件性能。迄今为止,大多数关于增益补偿超材料的研究都集中在染料分子作为增益介质,因为它们很容易纳入概念验证实验,并且可以使用简单的两级系统进行精确建模。相比之下,无机半导体及其异质结构作为增益介质很有吸引力,因为它们的吸收/发射共振可以从太赫兹频率设计到紫外线频率。此外,半导体双曲超材料可以电注入电荷载流子,从而可以更直接、更可靠地控制其功能。最后,无机半导体在鲁棒性、寿命以及与导波器件的集成性方面比染料具有明显的优势。该提案的总体目标是推进增益增强型多功能超材料的科学技术。 具体来说,我们的目标是全面理解和实验证明:(1)基于波导的增益增强型多功能超材料中的无损传播,(2)增益增强型多功能超材料中的场增强二阶和三阶非线性效应,以及(3)增益增强型多功能超材料中的应变增强非线性效应,所有这些效应均由半导体增益介导。 为了具体起见,我们关注光谱的近红外部分,但我们强调,从我们的工作中吸取的经验教训可以很容易地扩展到紫外线和太赫兹频率。 增益增强型多功能超材料为实现前所未有的非线性转换效率和无损信号传输提供了途径。 由于其极小的占地面积和潜在的快速运行,增益增强型多功能超材料将成为未来光子电路集成非线性器件的有力候选者。 所提出的研究不仅将推进有源半导体超材料的基础科学和技术,还将为物理现象的研究树立榜样,在物理现象中,电子、电磁和机械相互作用的自洽处理变得至关重要。 我们预计增益增强型多功能超材料将在数据和电信、图形处理、计算、生物医学成像和化学传感等领域得到应用。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coupling in a dual metallo-dielectric nanolaser system
双金属电介质纳米激光系统中的耦合
- DOI:10.1364/ol.42.004760
- 发表时间:2017
- 期刊:
- 影响因子:3.6
- 作者:Deka, Suruj S.;Pan, Si Hui;Gu, Qing;Fainman, Yeshaiahu;El Amili, Abdelkrim
- 通讯作者:El Amili, Abdelkrim
Nonreciprocal lasing in topological cavities of arbitrary geometries
- DOI:10.1126/science.aao4551
- 发表时间:2017-11-03
- 期刊:
- 影响因子:56.9
- 作者:Bahari, Babak;Ndao, Abdoulaye;Kante, Boubacar
- 通讯作者:Kante, Boubacar
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yeshaiahu Fainman其他文献
Laser-induced selective local patterning of vanadium oxide phases
- DOI:
10.1007/s42114-025-01246-9 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:21.800
- 作者:
Junjie Li;Henry Navarro;Alexandre Pofelski;Pavel Salev;Ralph El Hage;Erbin Qiu;Yimei Zhu;Yeshaiahu Fainman;Ivan K. Schuller - 通讯作者:
Ivan K. Schuller
Système et procédé pour un état lié dans des sources laser en continuum
连续激光源的系统和程序
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Boubacar Kante;Yeshaiahu Fainman;Thomas Lepetit;Ashok Kodigala;Qingyi Gu - 通讯作者:
Qingyi Gu
Advantages of Non-degenerate Two-photon Microscopy for Deep Tissue Imaging
- DOI:
10.1016/j.bpj.2019.11.1752 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Sanaz Sadegh;Mu-Han Yang;Christopher Ferri;Martin Thunemann;Anna Devor;Yeshaiahu Fainman - 通讯作者:
Yeshaiahu Fainman
Yeshaiahu Fainman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yeshaiahu Fainman', 18)}}的其他基金
PIC: Hybrid Photonic-Electronic Reprogrammable Reservoir Computing with Polarization Modes-enhanced Dimensionality
PIC:具有偏振模式增强维数的混合光子-电子可重编程储层计算
- 批准号:
2217453 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
ASCENT: Collaborative Research: Programmable Photonic Computation Accelerators (PPCA)
ASCENT:协作研究:可编程光子计算加速器(PPCA)
- 批准号:
2023730 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Quantum Communication Circuits on a CMOS Chip (QC4)
CMOS 芯片上的量子通信电路 (QC4)
- 批准号:
1901844 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
PIC: Mobile in Situ Fourier Transform Spectrometer on a Chip
PIC:芯片上的移动原位傅立叶变换光谱仪
- 批准号:
1807890 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CREWS: Chemical Resonance Excitation Wavelength Selection for Label-Free DNA Analysis
CREWS:无标记 DNA 分析的化学共振激发波长选择
- 批准号:
1704085 - 财政年份:2017
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Synthesis of Second-Order Optical Nonlinearities with Electronic Metamaterials
用电子超材料合成二阶光学非线性
- 批准号:
1707641 - 财政年份:2017
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Generation and Manipulation of New Sources in 20-60 micron on a Chip
合作研究:EAGER:在芯片上生成和操纵 20-60 微米的新光源
- 批准号:
1644647 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
E2CDA: Type I: Collaborative Research: Energy Efficient Computing with Chip-Based Photonics
E2CDA:类型 I:协作研究:基于芯片的光子学的节能计算
- 批准号:
1640227 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Fundamental Investigations of Nanolaser Physics: Statistical Properties, Thermal Stability, and Temporal Dynamics of Light Emission
纳米激光物理的基础研究:统计特性、热稳定性和光发射的时间动力学
- 批准号:
1405234 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
EAGER: Cartridge lab-on-chip (CLOC) for Mobile Health
EAGER:用于移动医疗的盒式芯片实验室 (CLOC)
- 批准号:
1445158 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似海外基金
Doctoral Dissertation Research: A Syndrome of Care: The New Sciences of Survivorship at the Frontier of Medical Rescue
博士论文研究:护理综合症:医疗救援前沿的生存新科学
- 批准号:
2341900 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Understanding mosquito smell system: a new frontier in mosquito control
了解蚊子的气味系统:蚊子控制的新领域
- 批准号:
DP240103188 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Discovery Projects
Computational design of frontier materials for sustainable technologies
可持续技术前沿材料的计算设计
- 批准号:
FL230100176 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Australian Laureate Fellowships
Gender and Precarity at the Energy Frontier
能源前沿的性别与不稳定
- 批准号:
EP/Z000661/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant
Engineered topological nanostructures – a new frontier in materials design
工程拓扑纳米结构——材料设计的新前沿
- 批准号:
DP240100238 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Discovery Projects
SG: Species Distribution Modeling on the A.I. frontier: Deep generative models for powerful, general and accessible SDM
SG:人工智能上的物种分布建模
- 批准号:
2329701 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CAREER: Dynamic connectivity: a research and educational frontier for sustainable environmental management under climate and land use uncertainty
职业:动态连通性:气候和土地利用不确定性下可持续环境管理的研究和教育前沿
- 批准号:
2340161 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Diamane: A New Frontier in Materials Science
钻石烷:材料科学的新前沿
- 批准号:
DP230100542 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Discovery Projects
Investigating the agency of Aboriginal Frontier War memorials
调查原住民边境战争纪念碑的机构
- 批准号:
DE230101072 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Discovery Early Career Researcher Award
Physics Frontier Center for Living Systems
生命系统物理前沿中心
- 批准号:
2317138 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Cooperative Agreement














{{item.name}}会员




