Unraveling the Fundamental Mechanisms of Nanoscale Deformation in Bulk Metallic Glasses

揭示块状金属玻璃纳米级变形的基本机制

基本信息

  • 批准号:
    1901959
  • 负责人:
  • 金额:
    $ 65.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

Although the lack of periodic atomic arrangements in bulk metallic glasses is responsible for multiple desirable properties such as high strength, superior elasticity, and an ability to be easily formed into virtually unlimited shapes, their disordered atomic structure and associated absence of defined shear planes also give rise to inferior room temperature ductility. As a result, the practical use of metallic glasses as structural materials is currently limited to only a few applications such as eyeglass frames, surgical tools, or golf clubs. In this award, experimental and theoretical approaches are combined to advance our knowledge of the atomic-scale processes governing the response of bulk metallic glasses to deformation. An improved understanding of microstructural damage mechanisms is a necessary pre-requisite to establish structure-property relationships that will allow custom-designed alloys to be produced with characteristics tailored to best match their intended applications. The students working on the project will have the unique opportunity to be trained in an area that combines interdisciplinary skills in micro- and nanomechanics, to perform investigations of materials at the scale of single atoms, to implement new experimental approaches, and to develop novel atomic scale molecular dynamics simulations. The research team will also engage with local schools to give lectures and demonstrations designed to encourage students to pursue careers in science and engineering.Metallic glasses accommodate plastic flow through the emergence of shear transformation zones, which are the smallest identifiable units in inhomogeneous plastic flow. If many such zones aggregate, shear bands can form that localize large shear strain inside a thin region of material. Such shear bands in metallic glasses are analogous to shear planes in crystals. Here, joint experimental and computational modeling studies are employed to investigate the initiation and growth of shear transformation zones, the shear bands they form, and the mechanical properties they control. Towards this end, nanoscale mechanical testing such as indentation and compression will be carried out on samples produced by innovative preparation methods to study how plastic flow is affected by strain rate, sample size, probing volume, and the structural properties of the material during deformation, the results of which will then be compared to computer simulations. This work seeks to develop an ability to quantitatively predict the initiation and propagation of shear bands, which is a critical step towards a mechanistic understanding of deformation and failure properties as well as identifying ductility and toughness enhancement methods for metallic glasses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管在大块金属玻璃中缺乏周期性原子排列是许多理想性能的原因,如高强度,优越的弹性,以及容易形成几乎无限形状的能力,但它们无序的原子结构和相关的定义剪切面的缺乏也导致了较差的室温延展性。因此,金属玻璃作为结构材料的实际应用目前仅限于少数应用,如眼镜框架,手术工具或高尔夫球杆。在这个奖项中,实验和理论方法相结合,以推进我们对控制大块金属玻璃变形响应的原子尺度过程的认识。提高对微观结构损伤机制的理解是建立结构-性能关系的必要先决条件,这将使定制设计的合金能够生产出具有最适合其预期应用的特性的合金。参与该项目的学生将有独特的机会在微观和纳米力学的跨学科技能领域接受培训,在单原子尺度上对材料进行研究,实施新的实验方法,并开发新的原子尺度分子动力学模拟。研究小组还将与当地学校合作,举办讲座和示范活动,鼓励学生从事科学和工程方面的职业。金属玻璃通过出现剪切转变区来容纳塑性流动,剪切转变区是非均匀塑性流动中最小的可识别单元。如果许多这样的区域聚集在一起,可以形成剪切带,在材料的薄区域内局部产生大的剪切应变。金属玻璃中的这种剪切带类似于晶体中的剪切面。本文采用实验和计算模型相结合的方法,研究了剪切转变带的形成和发展、剪切带形成的剪切带及其控制的力学性能。为此,将对采用创新制备方法生产的样品进行纳米级机械测试,如压痕和压缩,以研究变形过程中塑性流动如何受到应变速率、样品尺寸、探测体积和材料结构特性的影响,然后将其结果与计算机模拟进行比较。这项工作旨在发展定量预测剪切带的开始和扩展的能力,这是对变形和破坏特性的机理理解以及确定金属玻璃的延展性和韧性增强方法的关键一步。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Angstrom-scale replication of surfaces with crystallized bulk metallic glasses
  • DOI:
    10.1016/j.mtnano.2021.100145
  • 发表时间:
    2021-10-24
  • 期刊:
  • 影响因子:
    10.3
  • 作者:
    Chen,Z.;Xie,Y.;Schwarz,U. D.
  • 通讯作者:
    Schwarz,U. D.
Atomic-scale homogeneous plastic flow beyond near-theoretical yield stress in a metallic glass
  • DOI:
    10.1038/s43246-021-00124-3
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Jiaxin Yu;A. Datye;Zheng Chen;Chao Zhou;Omur E. Dagdeviren;J. Schroers;U. Schwarz
  • 通讯作者:
    Jiaxin Yu;A. Datye;Zheng Chen;Chao Zhou;Omur E. Dagdeviren;J. Schroers;U. Schwarz
Relaxation and crystallization studied by observing the surface morphology evolution of atomically flat Pt57.5Cu14.7Ni5.3P22.5 upon annealing
  • DOI:
    10.1016/j.scriptamat.2020.02.035
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Zheng Chen;A. Datye;Jittisa Ketkaew;S. Sohn;Chao Zhou;Omur E. Dagdeviren;J. Schroers;U. Schwarz
  • 通讯作者:
    Zheng Chen;A. Datye;Jittisa Ketkaew;S. Sohn;Chao Zhou;Omur E. Dagdeviren;J. Schroers;U. Schwarz
Atomic-Scale Imprinting by Sputter Deposition of Amorphous Metallic Films
非晶金属薄膜溅射沉积的原子级压印
  • DOI:
    10.1021/acsami.0c14982
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Chen, Zheng;Datye, Amit;Simon, Georg H.;Zhou, Chao;Kube, Sebastian A.;Liu, Naijia;Liu, Jingbei;Schroers, Jan;Schwarz, Udo D.
  • 通讯作者:
    Schwarz, Udo D.
Atomic imprinting in the absence of an intrinsic length scale
  • DOI:
    10.1063/5.0027982
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Chao Zhou;A. Datye;Zheng Chen;G. Simon;Xinzhe Wang;J. Schroers;U. Schwarz
  • 通讯作者:
    Chao Zhou;A. Datye;Zheng Chen;G. Simon;Xinzhe Wang;J. Schroers;U. Schwarz
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Udo Schwarz其他文献

Udo Schwarz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Udo Schwarz', 18)}}的其他基金

CAS-Climate: Atomically Resolved Single-Molecule Microscopy of Catalytic Intermediates in CO2 Reduction
CAS-Climate:二氧化碳还原催化中间体的原子分辨单分子显微镜
  • 批准号:
    2203589
  • 财政年份:
    2022
  • 资助金额:
    $ 65.72万
  • 项目类别:
    Standard Grant
Chemical Imaging of Elementary Steps in Hydrogenation Reactions of Surfaces
表面氢化反应基本步骤的化学成像
  • 批准号:
    1808422
  • 财政年份:
    2018
  • 资助金额:
    $ 65.72万
  • 项目类别:
    Continuing Grant
Chemical Imaging of Elementary Steps in Hydrogenation Reactions of Surfaces
表面氢化反应基本步骤的化学成像
  • 批准号:
    1608568
  • 财政年份:
    2016
  • 资助金额:
    $ 65.72万
  • 项目类别:
    Standard Grant
Materials World Network: Mapping Oxide Surface Reactivity Through Spacially-Resolved Atomic Interaction Forces
材料世界网络:通过空间分辨原子相互作用力绘制氧化物表面反应性
  • 批准号:
    0806893
  • 财政年份:
    2008
  • 资助金额:
    $ 65.72万
  • 项目类别:
    Continuing Grant
IMR: Development of a Variable Temperature/Variable Magnetic Field Scanning Force Microscope and Student Training
IMR:变温/变磁场扫描力显微镜的开发和学生培训
  • 批准号:
    0414944
  • 财政年份:
    2004
  • 资助金额:
    $ 65.72万
  • 项目类别:
    Standard Grant

相似海外基金

Understanding Fundamental Mechanisms that Underlie Nano-Neuro Interactions
了解纳米神经相互作用的基本机制
  • 批准号:
    2331330
  • 财政年份:
    2024
  • 资助金额:
    $ 65.72万
  • 项目类别:
    Standard Grant
CAREER: Elucidating the fundamental mechanisms of stress corrosion cracking from smooth tensile specimens under constant load for quantitative life-prediction
职业:阐明恒定载荷下光滑拉伸样品应力腐蚀开裂的基本机制,以进行定量寿命预测
  • 批准号:
    2339696
  • 财政年份:
    2024
  • 资助金额:
    $ 65.72万
  • 项目类别:
    Continuing Grant
Fundamental Mechanisms of Higher-Order Circadian Rhythms
高阶昼夜节律的基本机制
  • 批准号:
    10713148
  • 财政年份:
    2023
  • 资助金额:
    $ 65.72万
  • 项目类别:
Fundamental Biobehavioral Mechanisms Underlying the Integrated Development of Emotion, Attachment, and Nutritive Intake in the Mother-Infant Dyad
母婴二元情感、依恋和营养摄入综合发展的基本生物行为机制
  • 批准号:
    10583348
  • 财政年份:
    2023
  • 资助金额:
    $ 65.72万
  • 项目类别:
CAREER: In-situ Hybrid Layerwise Rolling and Sealing in Laser Powder-bed Fusion Manufacturing of Tungsten: Fundamental Processing Mechanisms and Transition Temperature Controls
职业:钨激光粉末床熔融制造中的原位混合层状轧制和密封:基本加工机制和转变温度控制
  • 批准号:
    2240069
  • 财政年份:
    2023
  • 资助金额:
    $ 65.72万
  • 项目类别:
    Standard Grant
Time Resolved Studies of Fundamental Mechanisms in Natural Photosynthesis
自然光合作用基本机制的时间分辨研究
  • 批准号:
    2303743
  • 财政年份:
    2023
  • 资助金额:
    $ 65.72万
  • 项目类别:
    Standard Grant
CRCNS:US-lsrael Research Proposal: To Elucidate Fundamental Mechanisms of Transformed Saliency Map to
CRCNS:美国-以色列研究提案:阐明显着图转变的基本机制
  • 批准号:
    10831116
  • 财政年份:
    2023
  • 资助金额:
    $ 65.72万
  • 项目类别:
Fundamental neurocognitive mechanisms underpinning creative thought
支持创造性思维的基本神经认知机制
  • 批准号:
    DP220103941
  • 财政年份:
    2022
  • 资助金额:
    $ 65.72万
  • 项目类别:
    Discovery Projects
Enhancing multi-omic single cell sequencing to resolve fundamental biological mechanisms in humans and non-human organisms
增强多组学单细胞测序以解决人类和非人类生物体的基本生物学机制
  • 批准号:
    BB/W019922/1
  • 财政年份:
    2022
  • 资助金额:
    $ 65.72万
  • 项目类别:
    Research Grant
Fundamental mechanisms and obstacles in the bilinear control of Schrödinger equations
薛定谔方程双线性控制的基本机制和障碍
  • 批准号:
    RGPIN-2016-05741
  • 财政年份:
    2022
  • 资助金额:
    $ 65.72万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了