Interaction of Algebraic, Algorithmic and Asymptotic Properties in Finitely Generated Groups
有限生成群中代数、算法和渐近性质的相互作用
基本信息
- 批准号:1901976
- 负责人:
- 金额:$ 53.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern group theory is a very fast developing area of mathematics that uses methods from algebra, geometry, combinatorics, topology, probability, logic, and computer science. Applications of group theory are ubiquitous throughout science, from physics and chemistry to cyber security. This award supports research in the area of asymptotic methods in group theory, an area that has been extremely active since seminal papers by Gromov on hyperbolic groups and asymptotic invariants of groups. This project will significantly advance knowledge of the area by solving several open problems. The broader impact of the project will affect students at all levels, and professional investigators. The principal investigators will continue running Nashville Math Club for K-12 students, engaging undergraduate students in research projects, and advising graduate students. In this research the principal investigators will work on several fundamental problems together with ideas of their solutions related to Burnside, asymptotic and algorithmic problems of finitely generated groups. The problems are intrinsically connected by the proposed methods of solutions and by the tools used in the proposed approaches in their solutions. The project for a definition of a proper analogue of asymptotic cones for Golod-Shafarevich groups has a potential impact far beyond group theory. Other problems concern the existence of an infinite finitely presented torsion group for which a detailed approach for a positive solution is provided, the existence of amenable groups with non-trivial Morse boundary, and the construction of a finitely presented group with maximal possible (continuum) different asymptotic cones (assuming the Continuum Hypothesis).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代群论是一个发展非常迅速的数学领域,它使用了代数、几何、组合学、拓扑学、概率论、逻辑学和计算机科学的方法。从物理和化学到网络安全,群论的应用在整个科学中无处不在。该奖项支持群论中渐近方法领域的研究,这一领域自格罗莫夫关于双曲群和群的渐近不变量的开创性论文以来一直非常活跃。该项目将通过解决几个悬而未决的问题,极大地促进对该地区的了解。该项目的更广泛影响将影响到各级学生和专业调查人员。主要调查人员将继续为K-12学生开办纳什维尔数学俱乐部,吸引本科生参与研究项目,并为研究生提供建议。在这项研究中,主要研究人员将致力于与Burnside、有限生成群的渐近和算法问题有关的几个基本问题及其解决方案的想法。这些问题通过拟议的解决方法及其解决办法中所使用的工具内在地联系在一起。定义Golod-Shafarevich群的渐近圆锥的适当类比的项目具有远远超出群论的潜在影响。其他问题涉及无限有限表示扭群的存在,其中提供了一个正解的详细方法,具有非平凡Morse边界的从属群的存在,以及具有最大可能(连续)不同渐近圆锥的有限表示群的构造(假设连续统假设)。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Algorithmic problems in groups with quadratic Dehn function
二次 Dehn 函数群中的算法问题
- DOI:10.4171/ggd/694
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Olshanskii, Alexander Yu.;Sapir, Mark V.
- 通讯作者:Sapir, Mark V.
Finite and nilpotent strongly verbally closed groups
有限且幂零的强语言封闭群
- DOI:10.1142/s0219498823501888
- 发表时间:2023
- 期刊:
- 影响因子:0.8
- 作者:Klyachko, Anton A.;Miroshnichenko, Veronika Yu.;Olshanskii, Alexander Yu.
- 通讯作者:Olshanskii, Alexander Yu.
Nilpotent algebras, implicit function theorem, and polynomial quasigroups
幂零代数、隐函数定理和多项式拟群
- DOI:10.1016/j.jalgebra.2023.05.024
- 发表时间:2023
- 期刊:
- 影响因子:0.9
- 作者:Bahturin, Yuri;Olshanskii, Alexander
- 通讯作者:Olshanskii, Alexander
On some generating set of Thompson’s group F
在 Thompson F 组的某些发电机组上
- DOI:10.1007/s40863-023-00360-0
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Golan Polak, Gili;Sapir, Mark
- 通讯作者:Sapir, Mark
Groups finitely presented in Burnside varieties
伯恩赛德品种中有限出现的群体
- DOI:10.1016/j.jalgebra.2020.05.020
- 发表时间:2020
- 期刊:
- 影响因子:0.9
- 作者:Olshanskii, A.Yu.
- 通讯作者:Olshanskii, A.Yu.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Sapir其他文献
On closed subgroups of the R. Thompson group F
- DOI:
10.1007/s11856-024-2692-z - 发表时间:
2024-12-18 - 期刊:
- 影响因子:0.800
- 作者:
Gili Golan-Polak;Mark Sapir - 通讯作者:
Mark Sapir
On Jones' subgroup of R. Thompson group <em>F</em>
- DOI:
10.1016/j.jalgebra.2016.09.001 - 发表时间:
2017-01-15 - 期刊:
- 影响因子:
- 作者:
Gili Golan;Mark Sapir - 通讯作者:
Mark Sapir
Mark Sapir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Sapir', 18)}}的其他基金
Conference: L2-Invariants and their Analogues in Positive Characteristic
会议:L2-不变量及其积极特征的类似物
- 批准号:
1748644 - 财政年份:2018
- 资助金额:
$ 53.99万 - 项目类别:
Standard Grant
Asymptotic and algorithmic methods in group theory
群论中的渐近方法和算法方法
- 批准号:
1161294 - 财政年份:2012
- 资助金额:
$ 53.99万 - 项目类别:
Continuing Grant
FRG: Asymptotic and probabilistic methods in geometric group theory
FRG:几何群论中的渐近和概率方法
- 批准号:
0455881 - 财政年份:2005
- 资助金额:
$ 53.99万 - 项目类别:
Continuing Grant
Asymptotic and algorithmic properties of groups
群的渐近性质和算法性质
- 批准号:
0245600 - 财政年份:2003
- 资助金额:
$ 53.99万 - 项目类别:
Continuing Grant
International Conference on Modern Algebra, May 21 - 24, 2002, Vanderbilt University, Nashville, Tennessee
现代代数国际会议,2002 年 5 月 21 - 24 日,范德比尔特大学,田纳西州纳什维尔
- 批准号:
0203947 - 财政年份:2002
- 资助金额:
$ 53.99万 - 项目类别:
Standard Grant
Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup Theory
群论和半群论中的几何和组合方法会议
- 批准号:
0070701 - 财政年份:2000
- 资助金额:
$ 53.99万 - 项目类别:
Standard Grant
Collaborative Research: Algorithmic Problems in Groups and Semigroups
协作研究:群和半群的算法问题
- 批准号:
9978802 - 财政年份:1999
- 资助金额:
$ 53.99万 - 项目类别:
Continuing Grant
相似国自然基金
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
AF: Small: Algorithmic Algebraic Methods for Systems of Difference-Differential Equations
AF:小:差分微分方程组的算法代数方法
- 批准号:
2139462 - 财政年份:2022
- 资助金额:
$ 53.99万 - 项目类别:
Standard Grant
Algebraic spline geometry: towards algorithmic shape representation
代数样条几何:走向算法形状表示
- 批准号:
EP/V012835/1 - 财政年份:2021
- 资助金额:
$ 53.99万 - 项目类别:
Research Grant
Linear Algebraic Techniques in Algorithmic Graph Theory
算法图论中的线性代数技术
- 批准号:
RGPIN-2015-04318 - 财政年份:2019
- 资助金额:
$ 53.99万 - 项目类别:
Discovery Grants Program - Individual
Linear Algebraic Techniques in Algorithmic Graph Theory
算法图论中的线性代数技术
- 批准号:
RGPIN-2015-04318 - 财政年份:2018
- 资助金额:
$ 53.99万 - 项目类别:
Discovery Grants Program - Individual
Linear Algebraic Techniques in Algorithmic Graph Theory
算法图论中的线性代数技术
- 批准号:
477857-2015 - 财政年份:2017
- 资助金额:
$ 53.99万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Linear Algebraic Techniques in Algorithmic Graph Theory
算法图论中的线性代数技术
- 批准号:
RGPIN-2015-04318 - 财政年份:2017
- 资助金额:
$ 53.99万 - 项目类别:
Discovery Grants Program - Individual
Linear Algebraic Techniques in Algorithmic Graph Theory
算法图论中的线性代数技术
- 批准号:
RGPIN-2015-04318 - 财政年份:2016
- 资助金额:
$ 53.99万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Complexity Theory: New Approaches and Algorithmic Applications
代数复杂性理论:新方法和算法应用
- 批准号:
16H05853 - 财政年份:2016
- 资助金额:
$ 53.99万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
AF: Small: Quantitative and Algorithmic Aspects of Semi-algebraic Sets and Partitions
AF:小:半代数集和分区的定量和算法方面
- 批准号:
1618981 - 财政年份:2016
- 资助金额:
$ 53.99万 - 项目类别:
Standard Grant
Linear Algebraic Techniques in Algorithmic Graph Theory
算法图论中的线性代数技术
- 批准号:
477857-2015 - 财政年份:2015
- 资助金额:
$ 53.99万 - 项目类别:
Discovery Grants Program - Accelerator Supplements