FRG: Asymptotic and probabilistic methods in geometric group theory
FRG:几何群论中的渐近和概率方法
基本信息
- 批准号:0455881
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-06-01 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main theme of this project is amenability and related concepts(Kazhdan property T, property tau, unitarizability, etc.) and itsapplications in different areas of mathematics from number theory totopology and functional analysis. In particular, the PIs willconcentrate on the following problems: * Classification of amenable groups and associative algebras, * Amenability of Golod-Shafarevich groups and related problems in3-dimensional topology and number theory, * Expander graphs, property tau for lattices in SL(2,C),probabilistic methods in group theory, * The Dixmier Unitarizability problem, * Constructing new examples of finitely presented groups withproperty T, * Linearity of discrete and pro-p-groups, * Asymptotic properties of discrete groups.The PIs are going to organize several conferences and workshops on differentaspects of the projects. The NSF grant will support several graduatestudents and postdoctoral fellows working undertheir supervision. Group theory was born as the theory of symmetry. The work of Gauss,Abel, Galois, Lie and others showed that groups of symmetries carry essential information about solvability of algebraic and differential equations. Group theory plays crucial role in many areas of mathematics and physics. Moreover, recent advances in group theory showed that many areas of mathematics are closely related. In turn, group theory has benefited tremendously from its connections with other areas. About 80 years ago, von Neumann, Banach and Tarski introduced the concept of amenabile group and connected it with basic questions like "Can one assign a weight to any set of points in our space so that the weight is invariant under all symmetries of the space?". The PIs will explore various aspects of amenability of groups and algebras, and deep connections between amenabile groups, number theory and topology.
该项目的主题是顺应性和相关概念(Kazhdan 属性 T、属性 tau、单位化性等)及其在从数论到拓扑和泛函分析的不同数学领域中的应用。特别是,PI将集中于以下问题: * 顺应群和结合代数的分类, * 戈洛德-沙法列维奇群的顺应性以及三维拓扑和数论中的相关问题, * 扩展图,SL(2,C) 中格的性质 tau,群论中的概率方法, * Dixmier 单位化问题, * 构造有限呈现群的新例子 具有属性 T,* 离散群和亲 p 群的线性,* 离散群的渐近性质。 PI 将就项目的不同方面组织多次会议和研讨会。美国国家科学基金会的拨款将支持在他们的监督下工作的几名研究生和博士后研究员。 群论作为对称性理论而诞生。高斯、阿贝尔、伽罗瓦、李等人的工作表明,对称群携带有关代数方程和微分方程可解性的基本信息。群论在数学和物理学的许多领域中起着至关重要的作用。此外,群论的最新进展表明数学的许多领域都是密切相关的。反过来,群论也从其与其他领域的联系中受益匪浅。大约 80 年前,冯·诺依曼、巴纳赫和塔斯基引入了顺应群的概念,并将其与诸如“能否为空间中的任意一组点分配权重,使得权重在空间的所有对称性下保持不变?”之类的基本问题联系起来。 PI 将探索群和代数的适用性的各个方面,以及适用群、数论和拓扑之间的深层联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Sapir其他文献
On closed subgroups of the R. Thompson group F
- DOI:
10.1007/s11856-024-2692-z - 发表时间:
2024-12-18 - 期刊:
- 影响因子:0.800
- 作者:
Gili Golan-Polak;Mark Sapir - 通讯作者:
Mark Sapir
On Jones' subgroup of R. Thompson group <em>F</em>
- DOI:
10.1016/j.jalgebra.2016.09.001 - 发表时间:
2017-01-15 - 期刊:
- 影响因子:
- 作者:
Gili Golan;Mark Sapir - 通讯作者:
Mark Sapir
Mark Sapir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Sapir', 18)}}的其他基金
Interaction of Algebraic, Algorithmic and Asymptotic Properties in Finitely Generated Groups
有限生成群中代数、算法和渐近性质的相互作用
- 批准号:
1901976 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference: L2-Invariants and their Analogues in Positive Characteristic
会议:L2-不变量及其积极特征的类似物
- 批准号:
1748644 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Asymptotic and algorithmic methods in group theory
群论中的渐近方法和算法方法
- 批准号:
1161294 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Continuing Grant
Asymptotic and algorithmic properties of groups
群的渐近性质和算法性质
- 批准号:
0245600 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing Grant
International Conference on Modern Algebra, May 21 - 24, 2002, Vanderbilt University, Nashville, Tennessee
现代代数国际会议,2002 年 5 月 21 - 24 日,范德比尔特大学,田纳西州纳什维尔
- 批准号:
0203947 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup Theory
群论和半群论中的几何和组合方法会议
- 批准号:
0070701 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Algorithmic Problems in Groups and Semigroups
协作研究:群和半群的算法问题
- 批准号:
9978802 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Conference: Geometric and Asymptotic Group Theory with Applications 2024
会议:几何和渐近群理论及其应用 2024
- 批准号:
2403833 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Asymptotic analysis of boundary value problems for strongly inhomogeneous multi-layered elastic plates
强非均匀多层弹性板边值问题的渐近分析
- 批准号:
EP/Y021983/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Asymptotic patterns and singular limits in nonlinear evolution problems
非线性演化问题中的渐近模式和奇异极限
- 批准号:
EP/Z000394/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Asymptotic behavior of null geodesics near future null infinity and its application
近未来零无穷大零测地线的渐近行为及其应用
- 批准号:
22KJ1933 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
2311500 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Asymptotic theory and infinite-dimensional stochastic calculus
渐近理论和无限维随机微积分
- 批准号:
23H03354 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Asymptotic analysis of online training algorithms in deep learning
深度学习在线训练算法的渐近分析
- 批准号:
2879209 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Asymptotic Analysis of Almost-Periodic Operators of Quantum Mechanics
量子力学准周期算子的渐近分析
- 批准号:
2306327 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Asymptotic approximation of the large-scale structure of turbulence in axisymmetric jets: a first principle jet noise prediction method
轴对称射流中湍流大尺度结构的渐近逼近:第一原理射流噪声预测方法
- 批准号:
EP/W01498X/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant