Asymptotic and algorithmic methods in group theory
群论中的渐近方法和算法方法
基本信息
- 批准号:1161294
- 负责人:
- 金额:$ 43.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposal describes several projects related to algorithmic and asymptotic aspects of group theory: * Constructing finitely presented groups with "transcendental" properties (in particular, finitely presented infinite torsion groups). * Complexity of residually finite groups. * Asymptotic and Burnside properties of group actions of maximal growth * Asymptotic cones of finitely presented groups. * Asymptotic properties of amenable groups.These topics are intimately related. For example, Higman embeddings and S-machines are going to be used to construct finitely presented torsion groups and in the study of complexity of the word problem in groups.Modern group theory is a very fast developing area of mathematics that accumulates methods from geometry, combinatorics, logic and computer science. Our proposal describes projects that are require methods and ideas from all these areas. In particular, constructing a finitely presented infinite torsion group (which is one of the outstanding problems in group theory) will require constructing a suitable kind of Turing machine (called S-machines) and adapting methods from geometric group theory to find suitable quotients of groups simulating these machines. Another idea coming from geometry (and due mostly to Gromov) is the idea of an asymptotic cone of a group. We are going to study asymptotic cones to discover algebraic and algorithmic properties of groups.
该提案描述了与群论的算法和渐近方面相关的几个项目: * 构造具有“超越”属性的有限呈现群(特别是有限呈现的无限挠场群)。 * 剩余有限群的复杂性。 * 最大增长群作用的渐近和伯恩赛德性质 * 有限呈现群的渐近锥。 * 顺应群的渐近性质。这些主题密切相关。例如,希格曼嵌入和 S 机将用于构造有限呈现的挠群以及研究群中问题的复杂性。现代群论是一个快速发展的数学领域,积累了几何学、组合学、逻辑学和计算机科学的方法。我们的提案描述了需要所有这些领域的方法和想法的项目。特别是,构造一个有限呈现的无限挠场群(这是群论中的突出问题之一)将需要构造一种合适的图灵机(称为 S 机)并采用几何群论的方法来找到模拟这些机器的合适群的商。来自几何学的另一个想法(主要归功于格罗莫夫)是群的渐近锥体的想法。我们将研究渐近锥以发现群的代数和算法性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Sapir其他文献
On closed subgroups of the R. Thompson group F
- DOI:
10.1007/s11856-024-2692-z - 发表时间:
2024-12-18 - 期刊:
- 影响因子:0.800
- 作者:
Gili Golan-Polak;Mark Sapir - 通讯作者:
Mark Sapir
On Jones' subgroup of R. Thompson group <em>F</em>
- DOI:
10.1016/j.jalgebra.2016.09.001 - 发表时间:
2017-01-15 - 期刊:
- 影响因子:
- 作者:
Gili Golan;Mark Sapir - 通讯作者:
Mark Sapir
Mark Sapir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Sapir', 18)}}的其他基金
Interaction of Algebraic, Algorithmic and Asymptotic Properties in Finitely Generated Groups
有限生成群中代数、算法和渐近性质的相互作用
- 批准号:
1901976 - 财政年份:2019
- 资助金额:
$ 43.28万 - 项目类别:
Continuing Grant
Conference: L2-Invariants and their Analogues in Positive Characteristic
会议:L2-不变量及其积极特征的类似物
- 批准号:
1748644 - 财政年份:2018
- 资助金额:
$ 43.28万 - 项目类别:
Standard Grant
FRG: Asymptotic and probabilistic methods in geometric group theory
FRG:几何群论中的渐近和概率方法
- 批准号:
0455881 - 财政年份:2005
- 资助金额:
$ 43.28万 - 项目类别:
Continuing Grant
Asymptotic and algorithmic properties of groups
群的渐近性质和算法性质
- 批准号:
0245600 - 财政年份:2003
- 资助金额:
$ 43.28万 - 项目类别:
Continuing Grant
International Conference on Modern Algebra, May 21 - 24, 2002, Vanderbilt University, Nashville, Tennessee
现代代数国际会议,2002 年 5 月 21 - 24 日,范德比尔特大学,田纳西州纳什维尔
- 批准号:
0203947 - 财政年份:2002
- 资助金额:
$ 43.28万 - 项目类别:
Standard Grant
Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup Theory
群论和半群论中的几何和组合方法会议
- 批准号:
0070701 - 财政年份:2000
- 资助金额:
$ 43.28万 - 项目类别:
Standard Grant
Collaborative Research: Algorithmic Problems in Groups and Semigroups
协作研究:群和半群的算法问题
- 批准号:
9978802 - 财政年份:1999
- 资助金额:
$ 43.28万 - 项目类别:
Continuing Grant
相似海外基金
Development and evaluation of a combined X-ray transmission and diffraction imaging system for pathology
用于病理学的组合 X 射线透射和衍射成像系统的开发和评估
- 批准号:
10699271 - 财政年份:2023
- 资助金额:
$ 43.28万 - 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 43.28万 - 项目类别:
Charge-Based Brain Modeling Engine with Boundary Element Fast Multipole Method
采用边界元快速多极子法的基于电荷的脑建模引擎
- 批准号:
10735946 - 财政年份:2023
- 资助金额:
$ 43.28万 - 项目类别:
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
- 批准号:
10597840 - 财政年份:2023
- 资助金额:
$ 43.28万 - 项目类别:
Bioethical Issues Associated with Objective Behavioral Measurement of Children with Hearing Loss in Naturalistic Environments
与自然环境中听力损失儿童的客观行为测量相关的生物伦理问题
- 批准号:
10790269 - 财政年份:2023
- 资助金额:
$ 43.28万 - 项目类别:
Expanding Swabseq sequencing technology to enable readiness for emerging pathogens
扩展 Swabseq 测序技术,为新出现的病原体做好准备
- 批准号:
10719421 - 财政年份:2023
- 资助金额:
$ 43.28万 - 项目类别:
A Mobile Health Application to Detect Absence Seizures using Hyperventilation and Eye-Movement Recordings
一款使用过度换气和眼动记录检测失神癫痫发作的移动健康应用程序
- 批准号:
10696649 - 财政年份:2023
- 资助金额:
$ 43.28万 - 项目类别:
Deep Learning Image Analysis Algorithms to Improve Oral Cancer Risk Assessment for Oral Potentially Malignant Disorders
深度学习图像分析算法可改善口腔潜在恶性疾病的口腔癌风险评估
- 批准号:
10805177 - 财政年份:2023
- 资助金额:
$ 43.28万 - 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
- 批准号:
10839518 - 财政年份:2023
- 资助金额:
$ 43.28万 - 项目类别:
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
- 批准号:
10667903 - 财政年份:2023
- 资助金额:
$ 43.28万 - 项目类别: