CDS&E: Simulation- and Data-driven Search for Cross-dimensional Materials Interfaces to Enhance Heat Transfer

CDS

基本信息

  • 批准号:
    1902352
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-15 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThe Division of Materials Research and the Chemical, Bioengineering, Environmental, and Transport Systems Division jointly fund this award, which supports theoretical and computational research and education on the properties of thin two-dimensional (2D) materials. With the rise of nanotechnology, reliable quantum simulations to supplement experimental investigations of emerging materials are becoming increasingly important: they accelerate the development of quantum technologies and their impacts to the global economy. The project addresses critical issues surrounding heat dissipation from hot spots in next-generation electronics based on 2D materials. Thermal management is important for cooling dense nanoelectronic circuits built from 2D materials in order to maintain optimal performance. With further reduction in device size and dimensionality, a crucial bottleneck for heat removal in 2D-based devices is the thermal pathway from the 2D layer into the 3D substrate supporting it. In order to achieve reliable device performance, it is imperative that the thermal resistance between 2D materials and various substrates be well characterized and that new solutions for boosting heat transfer are discovered. Since heat is transmitted via vibrations of the atomic lattice, understanding the unique vibrational properties of 2D materials will complement existing electronics applications and enable better performance through efficient thermal management.The research team will develop, validate, and openly share a platform of computational simulation tools as well as materials-property data sets for the thermal boundary conductance between many 2D materials and 3D substrates combinations. In addition, the PIs will train and mentor students through a multidisciplinary program covering materials science, computing, and engineering, and will present summer outreach activities on thermoelectric energy conversion to high-school students through the Summer Engineering Institute at the University of Massachusetts.TECHNICAL SUMMARYThe Division of Materials Research and the Chemical, Bioengineering, Environmental, and Transport Systems Division jointly fund this award, which supports theoretical and computational research and education on the properties of thin two-dimensional (2D) materials. Comprehensive and predictive first-principles modeling is required to gain a more complete understanding of the transfer of energy across interfaces between materials of dissimilar dimensionality, in order to guide the design of a broad range of next-generation thermal-management materials. The proposed work will develop simulation tools and data sets for the transfer of thermal energy at nanostructured cross-dimensional interfaces between atomic mono- and few-layer two-dimensional materials and three-dimensional substrates. The research team will develop and validate a suite of predictive numerical simulation tools for capturing the vibrational degrees of freedom, grounded in the fundamental theory behind the transfer of thermal energy at nanostructured interfaces. The PIs will perform state-of-the-art density functional theory (DFT) and time-dependent DFT calculations of electronic and vibrational structure of 2D-3D interfaces, coupled with Monte Carlo simulation of phonon transport across the interface.This work will deepen our understanding of the role of interface structure, composition, and dimensionality on the vibrational properties and phonon transport, and identify ways to improve it. These contributions will enable wider adoption of 2D materials in nanoelectronic devices and sensing applications, which are currently hampered by our limited understanding of how to systematically improve the heat management at interfaces between 2D materials and their 3D substrates/environment. The results will enable better thermal interface pairing, utilizing combinations of atomic monolayers with selected vibrational properties and composition tuned to match the surface vibrational modes of the substrate and to maximize thermal boundary conductance for thermal management applications. The PIs will propose ways to further improve the thermal boundary conductance by patterning of coating the surface of the substrate with thin films or low-dimensional nanostructures in order to better match the vibrational modes of the 2D layer and thus improve heat transfer. Publicly shared datasets will enable device designers to select 2D-3D materials combinations with specific interfacial properties needed for their applications, such as for heat removal from nanoelectronic devices and sensors built out of 2D materials.The research team will develop, validate, and openly share a platform of computational simulation tools as well as materials-property data sets for the thermal boundary conductance between many 2D materials and 3D substrates combinations. In addition, the PIs will train and mentor students through a multidisciplinary program covering materials science, computing, and engineering, and will present summer outreach activities on thermoelectric energy conversion to high-school students through the Summer Engineering Institute at the University of Massachusetts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结材料研究部和化学,生物工程,环境和运输系统部共同资助该奖项,该奖项支持薄二维(2D)材料特性的理论和计算研究和教育。随着纳米技术的兴起,可靠的量子模拟来补充新兴材料的实验研究变得越来越重要:它们加速了量子技术的发展及其对全球经济的影响。该项目解决了基于2D材料的下一代电子产品中热点散热的关键问题。热管理对于冷却由2D材料构建的密集纳米电子电路以保持最佳性能非常重要。随着器件尺寸和维度的进一步缩小,2D器件散热的一个关键瓶颈是从2D层到支撑它的3D衬底的热路径。为了实现可靠的器件性能,必须很好地表征2D材料和各种衬底之间的热阻,并发现促进传热的新解决方案。由于热量是通过原子晶格的振动传递的,因此了解2D材料的独特振动特性将补充现有的电子应用,并通过有效的热管理实现更好的性能。研究团队将开发,验证,并开放共享计算模拟工具和材料的平台-许多2D材料和3D衬底组合之间的热边界传导的属性数据集。此外,PI将通过涵盖材料科学,计算和工程的多学科计划培训和指导学生,并将通过马萨诸塞州大学的夏季工程学院向高中生介绍热电能转换的夏季推广活动。和运输系统部共同资助该奖项,该奖项支持薄二维(2D)材料特性的理论和计算研究和教育。需要全面和预测性的第一原理建模,以更全面地了解不同维度材料之间界面的能量传递,从而指导广泛的下一代热管理材料的设计。拟议的工作将开发模拟工具和数据集,用于在原子单层和少层二维材料与三维衬底之间的纳米结构交叉维界面处传递热能。研究团队将开发和验证一套预测性数值模拟工具,用于捕获振动自由度,以纳米结构界面处热能传递背后的基本理论为基础。研究人员将对二维-三维界面的电子和振动结构进行最先进的密度泛函理论(DFT)和含时DFT计算,并结合界面声子输运的Monte Carlo模拟。这项工作将加深我们对界面结构、组成和维度对振动性质和声子输运的作用的理解,这些贡献将使2D材料在纳米电子器件和传感应用中得到更广泛的采用,目前我们对如何系统地改善2D材料与其3D衬底/环境之间界面处的热管理的理解有限,这阻碍了2D材料的应用。结果将使更好的热界面配对,利用原子单层的组合与选定的振动特性和组合物调整,以匹配基板的表面振动模式,并最大限度地提高热管理应用的热边界传导。PI将提出通过用薄膜或低维纳米结构涂覆衬底表面的图案化来进一步改善热边界传导的方法,以便更好地匹配2D层的振动模式,从而改善热传递。公开共享的数据集将使设备设计人员能够选择具有其应用所需的特定界面特性的2D-3D材料组合,例如用于从纳米电子设备和由2D材料构建的传感器中散热。研究团队将开发,验证,并开放共享计算模拟工具和材料的平台-许多2D材料和3D衬底组合之间的热边界传导的属性数据集。此外,PI将通过涵盖材料科学,计算和工程的多学科计划培训和指导学生,并将在夏季举办关于热电能转换为高-该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
In-plane thermoelectric properties of graphene/xBN/graphene van der Waals heterostructures
  • DOI:
    10.1088/1361-648x/acb89e
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Makumi;D. Bem;Nicholas Musila;C. Foss;Z. Akšamija
  • 通讯作者:
    S. Makumi;D. Bem;Nicholas Musila;C. Foss;Z. Akšamija
Electronic transport across extended grain boundaries in graphene
  • DOI:
    10.1088/2632-959x/ac0597
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Majee, Arnab K.;Aksamija, Zlatan
  • 通讯作者:
    Aksamija, Zlatan
Giant Isotope Effect of Thermal Conductivity in Silicon Nanowires
  • DOI:
    10.1103/physrevlett.128.085901
  • 发表时间:
    2022-02-23
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Ci, Penghong;Sun, Muhua;Wu, Junqiao
  • 通讯作者:
    Wu, Junqiao
Effects of alloying on in-plane thermal conductivity and thermal boundary conductance in transition metal dichalcogenide monolayers
  • DOI:
    10.1103/physrevmaterials.4.124006
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    C. Foss;Z. Akšamija
  • 通讯作者:
    C. Foss;Z. Akšamija
Very high thermoelectric power factor near magic angle in twisted bilayer graphene
  • DOI:
    10.1088/2053-1583/ac161d
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    A. Kommini;Z. Akšamija
  • 通讯作者:
    A. Kommini;Z. Akšamija
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zlatan Aksamija其他文献

Correction: Electrothermal properties of 2D materials in device applications
  • DOI:
    10.1007/s10825-024-02193-2
  • 发表时间:
    2024-06-27
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Samantha Klein;Zlatan Aksamija
  • 通讯作者:
    Zlatan Aksamija
Boltzman transport simulation of single-walled carbon nanotubes
  • DOI:
    10.1007/s10825-008-0221-7
  • 发表时间:
    2008-02-16
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Zlatan Aksamija;Umberto Ravaioli
  • 通讯作者:
    Umberto Ravaioli
Meshless solution of the 3-D semiconductor Poisson equation
  • DOI:
    10.1007/s10825-006-0040-7
  • 发表时间:
    2007-01-18
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Zlatan Aksamija;Umberto Ravaioli
  • 通讯作者:
    Umberto Ravaioli

Zlatan Aksamija的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zlatan Aksamija', 18)}}的其他基金

CDS&E: Coupled Electro-Thermal Transport in Two-Dimensional Materials and Heterostructures
CDS
  • 批准号:
    2302879
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CI TraCS Research Starter Supplement: Computational Nanoscience for Energy-Efficient Electronic and Thermoelectric Materials and Devices
CI TraCS 研究入门补充:节能电子和热电材料及器件的计算纳米科学
  • 批准号:
    1449418
  • 财政年份:
    2015
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Computational nanoscience for energy-efficient electronic and thermoelectric materials and devices
节能电子和热电材料及器件的计算纳米科学
  • 批准号:
    1122690
  • 财政年份:
    2011
  • 资助金额:
    $ 33万
  • 项目类别:
    Fellowship Award

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

RAPID: Enhancing WUI Fire Assessment through Comprehensive Data and High-Fidelity Simulation
RAPID:通过综合数据和高保真模拟增强 WUI 火灾评估
  • 批准号:
    2401876
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CDS&E: Multiscale Data Intensive Simulation and Modeling of Microemulsion Boiling: A New Paradigm for Boiling Enhancement
CDS
  • 批准号:
    2347627
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
RII Track-4:@NSF: Surrogate-based Optimal Atmospheric Entry Guidance using High-fidelity Simulation Data
RII Track-4:@NSF:使用高保真模拟数据的基于替代的最佳大气进入指导
  • 批准号:
    2327379
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Measurement and analysis of radiotherapy small field dosimetry data to support the development of a simulation training product for clinical Radiotherapy Physicists.
放射治疗小场剂量测定数据的测量和分析,以支持临床放射治疗物理学家模拟培训产品的开发。
  • 批准号:
    10089179
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Collaborative R&D
Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
  • 批准号:
    2344664
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
ExCALIBUR HES: Exascale Data Testbed for Simulation, Data Analysis & Visualisation
ExCALIBUR HES:用于仿真、数据分析的百亿亿次数据测试台
  • 批准号:
    EP/Y004051/1
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Research Grant
Versatile Strength Evaluation of CFRP Based on an Automated Data-Driven Numerical Simulation Platform
基于自动化数据驱动数值模拟平台的 CFRP 多功能强度评估
  • 批准号:
    23K16891
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Physics-informed deep learning approach for simulation and data assimilation of earthquake cycles
用于地震周期模拟和数据同化的物理知识深度学习方法
  • 批准号:
    23K03552
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploration of efficient turbulence stimulation method with data assimilation of numerical simulation and measurement
数值模拟与测量数据同化的高效湍流模拟方法探索
  • 批准号:
    23H01622
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Real-time simulation of unprecedented complex disasters through data science embedded with empirical knowledge of physics
通过嵌入物理学经验知识的数据科学实时模拟前所未有的复杂灾难
  • 批准号:
    23H01662
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了