Global Dynamics of Nonlinear Dispersive Evolution Equations and Spectral Theory
非线性色散演化方程的全局动力学和谱理论
基本信息
- 批准号:1902691
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims at understanding the propagation of waves in a wide sense. On the one hand, the PI will investigate the behavior of waves in space, as they interact nonlinearly with themselves and matter over large space-time scales. The ultimate goal is to explain how the energy, which is stored in a wave undergoing a nonlinear dynamical evolution, ultimately splits into quantized pieces and a wave "at the horizon". The latter refers to energy, possibly of large size, which is infinitely spread out and does not interact with anything in a noticeable fashion. In contrast with this macroscopic behavior, the project also aims at understanding the behavior of waves on the microscopic scale, such as in crystals or quasi-crystals. The goal is to explain transitions from an insulating state to that of a conductor, which these materials may exhibit as they undergo changes on the molecular level. Such changes may occur through the insertion of impurities, or changes in the environment. Both the macroscopic as well as the microscopic behavior of waves is of crucial importance to science and engineering, and profoundly affects our daily modern lives. Modern communication relies on waves transmitted over large distances both in space but also along glass fiber cables. For the latter the properties of the material are crucial and both nonlinear effects as well as aforementioned microscopic phenomena decide the suitability of the underlying medium. More technically speaking, the PI intends to further investigate the rigorous mathematical theory of focusing dispersive semilinear evolution equations. A major open problem is to analyze the resolution of any solution into moving solitons and radiation. Some success has been achieved in recent years on this important problem, but for nonintegrable equations we are far from a satisfactory understanding. The PI is currently involved in the study of this problem in the dissipative setting in which some damping is added to the equation. The Hamiltonian setting appears to be very difficult at the moment, especially in the subcritical regime. The methods involved derive from dynamical systems, invariant manifold theory, and dispersive PDEs. The quantum mechanical problems alluded in the previous paragraph belong to the area of Anderson localization. Together with his long-standing collaborator Michael Goldstein at Toronto, but also with young collaborators which are joining the field, the PI intends to bring the body of techniques which were developed over the past 20 years based on large deviation estimates, the avalanche principle, semi-algebraic sets, and harmonic analysis such as (pluri)subharmonic functions and the Cartan estimate, to bear on both linear and nonlinear problems in dynamical systems and spectral theory. Ultimately, the goal here is also to better describe the behavior of wave propagation in disordered media.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在在广泛的意义上理解波浪的传播。一方面,PI将研究空间中的波的行为,因为它们与自身的非线性相互作用并在大时空尺度上进行物质。最终目标是解释如何存储在非线性动力学进化的波浪中的能量如何将最终分为量化的碎片和“地平线”的波浪。后者是指能量,可能是大尺寸的能量,它无限分散,并且不会以明显的方式与任何事物相互作用。与这种宏观行为相反,该项目还旨在了解微观尺度上的波的行为,例如在晶体或准晶体中。目的是解释从绝缘状态到导体的过渡,这些材料在分子水平发生变化时可能会显示出来。这种变化可能通过插入杂质或环境变化而发生。波浪的宏观和微观行为对科学和工程至关重要,并且对我们的日常现代生活产生了深远的影响。现代通信依赖于在太空中且沿玻璃纤维电缆的大距离传输的波浪。对于后者,材料的性质至关重要,非线性效应以及上述显微镜现象决定了基础培养基的适用性。从技术上讲,PI旨在进一步研究集中分散半线性进化方程的严格数学理论。一个主要的开放问题是分析任何解决方案中的任何解决方案中的孤子和辐射。近年来,在这个重要问题上已经取得了一些成功,但是对于不可整合的方程式,我们远非令人满意的理解。 PI目前参与了该问题的研究,在耗散性环境中,将一些阻尼添加到方程式中。目前,哈密顿的环境似乎非常困难,尤其是在亚临界体制中。涉及的方法源自动态系统,不变歧管理论和分散PDE。上一段中提到的量子机械问题属于安德森本地化区域。 PI与他在多伦多的长期合作者迈克尔·戈德斯坦(Michael Goldstein)一起,以及与年轻的合作者一起,PI旨在根据大型偏差估计值,雪崩原理,半代数集合,半分析和诸如(pluri)的(plururi)子括号估算,在过去20年中开发的技术和诸如cartan toctimation and cartan toctimation and Cartan eversive and Cartan toctimations cartan eversime和光谱理论。 最终,这里的目标也是更好地描述无序媒体中波浪传播的行为。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An introduction to multiscale techniques in the theory of Anderson localization, Part I
安德森定位理论中的多尺度技术简介,第一部分
- DOI:10.1016/j.na.2022.112869
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Schlag, Wilhelm
- 通讯作者:Schlag, Wilhelm
On pointwise decay of waves
- DOI:10.1063/5.0042767
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:W. Schlag
- 通讯作者:W. Schlag
On Modified Scattering for 1D Quadratic Klein–Gordon Equations With Non-Generic Potentials
具有非泛势的一维二次克莱因-戈登方程的修正散射
- DOI:10.1093/imrn/rnac010
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Lindblad, Hans;Lührmann, Jonas;Schlag, Wilhelm;Soffer, Avy
- 通讯作者:Soffer, Avy
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wilhelm Schlag其他文献
石英のESR信号強度と結晶化度によるタクラマカン砂漠における砂の供給源と運搬システムの解明
基于ESR信号强度和石英结晶度阐明塔克拉玛干沙漠沙子来源和输送系统
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Joachim Krieger;Kenji Nakanishi;Wilhelm Schlag;勝山正則,谷誠;数土直紀;烏田明典 - 通讯作者:
烏田明典
Biharmonic Lagrangean submanifolds in Kaehler manifolds
凯勒流形中的双调和拉格朗日子流形
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0.5
- 作者:
Joachim Krieger;Kenji Nakanishi;Wilhelm Schlag;H. Urakawa and S. Maeta - 通讯作者:
H. Urakawa and S. Maeta
On codimension one stability of the soliton for the 1D focusing cubic Klein-Gordon equation
一维聚焦三次Klein-Gordon方程孤子的余维一稳定性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jonas Lührmann;Wilhelm Schlag - 通讯作者:
Wilhelm Schlag
A perturbation theory for core operators of Hilbert-Schmidt submodules
Hilbert-Schmidt子模核心算子的摄动理论
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0.8
- 作者:
Kenji Nakanishi;Wilhelm Schlag;Michio Seto - 通讯作者:
Michio Seto
風化花崗岩山地源流域における空間スケール拡大に伴う流況安定化メカニズム
风化花岗岩山源区空间尺度扩张的流量稳定机制
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Joachim Krieger;Kenji Nakanishi;Wilhelm Schlag;勝山正則,谷誠 - 通讯作者:
勝山正則,谷誠
Wilhelm Schlag的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wilhelm Schlag', 18)}}的其他基金
Dynamics of Nonlinear and Disordered Systems
非线性和无序系统的动力学
- 批准号:
2350356 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Global Dynamics of Nonlinear Dispersive Evolution Equations and Spectral Theory
非线性色散演化方程的全局动力学和谱理论
- 批准号:
1764384 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Long-Term Dynamics of Nonlinear Evolution Partial Differential Equations
非线性演化偏微分方程的长期动力学
- 批准号:
1842197 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Long-Term Dynamics of Nonlinear Evolution Partial Differential Equations
非线性演化偏微分方程的长期动力学
- 批准号:
1500696 - 财政年份:2015
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Global dynamics for nonlinear dispersive equations
非线性色散方程的全局动力学
- 批准号:
1160817 - 财政年份:2012
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Harmonic Analysis, Mathematical Physics, and Nonlinear PDE
调和分析、数学物理和非线性偏微分方程
- 批准号:
0653841 - 财政年份:2007
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Harmonic Analysis with Applications to Mathematical Physics
调和分析及其在数学物理中的应用
- 批准号:
0617854 - 财政年份:2005
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Harmonic Analysis with Applications to Mathematical Physics
调和分析及其在数学物理中的应用
- 批准号:
0300081 - 财政年份:2003
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Nonperturbative methods for quasiperiodic discrete Schroedinger equations on the line
在线准周期离散薛定谔方程的非微扰方法
- 批准号:
0241930 - 财政年份:2002
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似国自然基金
亚声速自由剪切湍流中条纹结构的非线性动力学和声辐射
- 批准号:12302290
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跨声速强气动干扰下管道磁浮列车系统的非线性动力学模型与悬浮失稳机制
- 批准号:52305134
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非线性波方程外区域初边值问题的长时间动力学性质研究
- 批准号:12371239
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
非线性吸振器等峰减振方法及时滞控制动力学研究
- 批准号:12302021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据驱动下双记忆混合控制船舶非线性耦合运动的随机动力学研究
- 批准号:12372033
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
- 批准号:
RGPIN-2019-06698 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
Generation mechanism of turbulence coherent structure by three-dimensional flow stability analysis applying nonlinear model
应用非线性模型进行三维流动稳定性分析的湍流相干结构生成机制
- 批准号:
19KK0373 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
- 批准号:
RGPIN-2019-06698 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
- 批准号:
RGPIN-2019-06698 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
Developing a predictive in silico toolkit for modeling NK cell responses against RNA virus infections
开发模拟 NK 细胞针对 RNA 病毒感染反应的预测工具包
- 批准号:
10686795 - 财政年份:2019
- 资助金额:
$ 27万 - 项目类别: