Nonperturbative methods for quasiperiodic discrete Schroedinger equations on the line

在线准周期离散薛定谔方程的非微扰方法

基本信息

  • 批准号:
    0241930
  • 负责人:
  • 金额:
    $ 3.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-02-01 至 2003-01-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT:This proposal deals with various aspects of discrete Schroedinger equationson the one dimensional lattice with deterministic potentials. So far, in collaboration with Jean Bourgain and Michael Goldstein, the author has considered quasi-periodic potentials given by ergodic shifts on tori, potentials obtained by means of the skew-shift on the two torus, as well as potentials defined in terms of strongly mixing dynamics, such as the doubling map on the circle or hyperbolic automorphisms on the two torus. In each of these cases, positivity of the Lyapunov exponent, regularity of the integrated density of states, and Anderson localization were studied. At this point, we are planning to address several remaining questions, including the following ones:1) Is the Lyapunov exponent positive in case of skew-shift potentials for small disorder ? 2) Is it possible to obtained detailed information on the nature of the eigenfunctions in the quasi-periodic case assuming only positivity of the Lyapunov exponent ? In fact, do the non perturbative techniques allow the definition of the essential support as described in the perturbative regime by Sinai and Froehlich, Spencer, Wittwer ? These questions are intimately linked with Y. G. Sinai's recent work on "anomalous transport in quasi-periodic media", and would provide better and more precise information on the subdiffusive behavior of the random walk considered by Sinai. 3) Is it possible to extend the nonperturbative methods to strips, or the two-dimensional plane ?4) Is the integrated density of states Holder continuous in the case of several frequencies or the skew-shift ? 5) What can be said about the statistics of the level-spacings of the eigen values for the case of the skew-shift ?Historically, the study of random Schroedinger operators started with PhilAnderson's work in the late 1950's, for which he received the Nobel prize.Before his work it was believed that small random impurities in a crystalwould not significantly change its conductance. Anderson, however, showed that this is not the case: Arbitrarily small random impurities occurringindependently at each lattice site turn a conductor into an insulator. Sincehis work, which was not mathematically rigorous, the development of a precisetheory of "Anderson localization" has been pursued by many mathematicians. It turned out that there were connections with deep results from several areas of mathematics. For example, Fuerstenberg's theorem on products of random matrices was a crucial tool in the development of the theory. These works attracted the attention of physicists, particularly experts in statistical mechanics. To this day, there is an active and fruitful exchange of ideas between mathematicians and physicists in this subject. In fact, the interest in random phenomena and methods has intensified quite notably in physics in recent years, as many important problems posed by statistical mechanics have proved to be rather deep mathematical challenges whose solution has lead to significant advances of probabilistic techniques.It is our hope that the projects set forth in this proposal will furtheradvance our insight into the models of statistical mechanics as well as providing useful tools for mathematicians working in ergodic theory, analysis, and mathematical physics.
摘要:本文讨论了一维确定性势格点上离散薛定谔方程的各个方面。到目前为止,在与Jean Bourgain和Michael Goldstein的合作中,作者已经考虑了由环面上的遍历移位给出的拟周期势,通过两个环面上的偏斜移位得到的势,以及根据强混合动力学定义的势,例如圆上的加倍映射或两个环面上的双曲自同构。在这些情况下,积极的李雅普诺夫指数,积分态密度的规律性,和安德森本地化进行了研究。在这一点上,我们计划解决几个剩余的问题,包括以下几个:1)在斜移势的情况下,李雅普诺夫指数是否为正 对于小的混乱?2)是否有可能获得关于 本征函数在准周期的情况下,假设只有积极的 李雅普诺夫指数实际上,非微扰技术 允许定义中所述的基本支持 西奈半岛和Froehlich,斯宾塞,Wittwer的扰动政权? 这些问题与Y密切相关。G.西奈半岛最近的工作, “准周期介质中的异常传输”,并将提供更好的 更精确的信息的次扩散行为的随机 行走在西奈山上。3)是否有可能将非微扰方法扩展到条带,或 二维平面?4)积分态密度保持器连续的情况下, 几个频率还是偏移5)关于本征能级间距的统计, 值的情况下,偏移?从历史上看,随机薛定谔算符的研究始于20世纪50年代末PhilAnderson的工作,他因此获得了诺贝尔奖。在他的工作之前,人们认为晶体中的小随机杂质不会显著改变其电导。然而,安德森指出,情况并非如此:在每个晶格位置独立出现的微小随机杂质将导体变成绝缘体。由于他的工作,这是不严格的数学,一个精确的理论的发展“安德森本地化”一直追求许多数学家。事实证明,这与几个数学领域的深层结果有关。例如,Fuerstenberg的定理产品的随机矩阵是一个重要的工具,在发展的理论。这些作品吸引了物理学家的注意,特别是统计力学专家。直到今天,数学家和物理学家在这个问题上的思想交流仍然活跃而富有成效。事实上,近年来,物理学对随机现象和方法的兴趣显著增强,由于统计力学提出的许多重要问题已被证明是相当深刻的数学挑战,其解决方案已导致概率技术的重大进步。我们希望本提案中提出的项目将进一步推进我们对统计力学模型的洞察力,并提供有用的为在遍历理论、分析和数学物理方面工作的数学家提供的工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wilhelm Schlag其他文献

Correction to: On Localization and the Spectrum of Multi-frequency Quasi-periodic Operators
  • DOI:
    10.1007/s10013-025-00736-z
  • 发表时间:
    2025-03-27
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Michael Goldstein;Wilhelm Schlag;Mircea Voda
  • 通讯作者:
    Mircea Voda
石英のESR信号強度と結晶化度によるタクラマカン砂漠における砂の供給源と運搬システムの解明
基于ESR信号强度和石英结晶度阐明塔克拉玛干沙漠沙子来源和输送系统
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joachim Krieger;Kenji Nakanishi;Wilhelm Schlag;勝山正則,谷誠;数土直紀;烏田明典
  • 通讯作者:
    烏田明典
A perturbation theory for core operators of Hilbert-Schmidt submodules
Hilbert-Schmidt子模核心算子的摄动理论
On codimension one stability of the soliton for the 1D focusing cubic Klein-Gordon equation
一维聚焦三次Klein-Gordon方程孤子的余维一稳定性
Biharmonic Lagrangean submanifolds in Kaehler manifolds
凯勒流形中的双调和拉格朗日子流形
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Joachim Krieger;Kenji Nakanishi;Wilhelm Schlag;H. Urakawa and S. Maeta
  • 通讯作者:
    H. Urakawa and S. Maeta

Wilhelm Schlag的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wilhelm Schlag', 18)}}的其他基金

Dynamics of Nonlinear and Disordered Systems
非线性和无序系统的动力学
  • 批准号:
    2350356
  • 财政年份:
    2024
  • 资助金额:
    $ 3.77万
  • 项目类别:
    Continuing Grant
Spectral Theory and Nonlinear Waves
谱理论和非线性波
  • 批准号:
    2054841
  • 财政年份:
    2021
  • 资助金额:
    $ 3.77万
  • 项目类别:
    Standard Grant
Global Dynamics of Nonlinear Dispersive Evolution Equations and Spectral Theory
非线性色散演化方程的全局动力学和谱理论
  • 批准号:
    1764384
  • 财政年份:
    2018
  • 资助金额:
    $ 3.77万
  • 项目类别:
    Standard Grant
Long-Term Dynamics of Nonlinear Evolution Partial Differential Equations
非线性演化偏微分方程的长期动力学
  • 批准号:
    1842197
  • 财政年份:
    2018
  • 资助金额:
    $ 3.77万
  • 项目类别:
    Continuing Grant
Global Dynamics of Nonlinear Dispersive Evolution Equations and Spectral Theory
非线性色散演化方程的全局动力学和谱理论
  • 批准号:
    1902691
  • 财政年份:
    2018
  • 资助金额:
    $ 3.77万
  • 项目类别:
    Standard Grant
Long-Term Dynamics of Nonlinear Evolution Partial Differential Equations
非线性演化偏微分方程的长期动力学
  • 批准号:
    1500696
  • 财政年份:
    2015
  • 资助金额:
    $ 3.77万
  • 项目类别:
    Continuing Grant
Global dynamics for nonlinear dispersive equations
非线性色散方程的全局动力学
  • 批准号:
    1160817
  • 财政年份:
    2012
  • 资助金额:
    $ 3.77万
  • 项目类别:
    Continuing Grant
Harmonic Analysis, Mathematical Physics, and Nonlinear PDE
调和分析、数学物理和非线性偏微分方程
  • 批准号:
    0653841
  • 财政年份:
    2007
  • 资助金额:
    $ 3.77万
  • 项目类别:
    Continuing Grant
Harmonic Analysis with Applications to Mathematical Physics
调和分析及其在数学物理中的应用
  • 批准号:
    0617854
  • 财政年份:
    2005
  • 资助金额:
    $ 3.77万
  • 项目类别:
    Continuing Grant
Harmonic Analysis with Applications to Mathematical Physics
调和分析及其在数学物理中的应用
  • 批准号:
    0300081
  • 财政年份:
    2003
  • 资助金额:
    $ 3.77万
  • 项目类别:
    Continuing Grant

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
  • 批准号:
    2750689
  • 财政年份:
    2025
  • 资助金额:
    $ 3.77万
  • 项目类别:
    Studentship
Developing behavioural methods to assess pain in horses
开发评估马疼痛的行为方法
  • 批准号:
    2686844
  • 财政年份:
    2025
  • 资助金额:
    $ 3.77万
  • 项目类别:
    Studentship
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 3.77万
  • 项目类别:
    Continuing Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 3.77万
  • 项目类别:
    Standard Grant
CAREER: New methods in curve counting
职业:曲线计数的新方法
  • 批准号:
    2422291
  • 财政年份:
    2024
  • 资助金额:
    $ 3.77万
  • 项目类别:
    Continuing Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
  • 批准号:
    2333724
  • 财政年份:
    2024
  • 资助金额:
    $ 3.77万
  • 项目类别:
    Standard Grant
Population genomic methods for modelling bacterial pathogen evolution
用于模拟细菌病原体进化的群体基因组方法
  • 批准号:
    DE240100316
  • 财政年份:
    2024
  • 资助金额:
    $ 3.77万
  • 项目类别:
    Discovery Early Career Researcher Award
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
  • 批准号:
    EP/Y002113/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.77万
  • 项目类别:
    Research Grant
Non invasive methods to accelerate the development of injectable therapeutic depots
非侵入性方法加速注射治疗储库的开发
  • 批准号:
    EP/Z532976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.77万
  • 项目类别:
    Research Grant
Development and Translation Mass Spectrometry Methods to Determine BioMarkers for Parkinson's Disease and Comorbidities
确定帕金森病和合并症生物标志物的质谱方法的开发和转化
  • 批准号:
    2907463
  • 财政年份:
    2024
  • 资助金额:
    $ 3.77万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了