Harmonic Analysis with Applications to Mathematical Physics

调和分析及其在数学物理中的应用

基本信息

  • 批准号:
    0617854
  • 负责人:
  • 金额:
    $ 8.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-01 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

PI: Wilhelm Schlag, California Institute of TechnologyDMS-0300081----------------------------------------------------Abstract:---------------------------------------------This proposal deals with several problems on the interface between mathematical physics and harmonic analysis. The author intends to pursue his work on Schroedinger equations with both deterministic and random potentials. Some questions remain on discrete Schroedinger operators on the line with quasi-periodic potentials, whereas the case of potentials given by non-independent but more strongly mixing dynamics than quasi-periodic presents many serious challenges and more needs to be done in this area. For time-dependent equations questions remain concerning dispersive estimates, both for time-dependent and time-independent potentials. For the latter, it is unknown whether or not the usual dispersive estimate holds for potentials that decay faster than an inverse square power, at least for dimensions two and larger. The author recently established this in one dimension, but in two dimensions dispersive estimatesunder the assumption of strong polynomial decay are unknown. He believes, however, that dispersive estimates in the two-dimensional case under the assumption of sufficiently fast decaying potentials is an accessible problem. The main interest in linear estimates lies with nonlinear applications. One example is given by the proof of asymptotic stability of weakly interacting multi-soliton solutions, which was recently established by Rodnianski, Soffer, and the author. It relied heavily on dispersive estimates for charge transfer models. Much remains to be done in this area, both in terms of nonlinear Schroedinger equations in general (global solutions for the critical defocusing three-dimensional equation), as well as questions concerning the dynamics of nonlinear bound states (solitons). In addition, the author intends to work on problems in harmonic analysis or applications thereof to problems outside of mathematical physics.Much of the success of science and engineering lies with its effective use of mathematical tools, both in terms of modeling and numerical studies on computers. Mathematicians play an important role in developing those methods and making them available to scientist and engineers. This proposal aims at addressing mathematical problems that for the most part originate in mathematical physics. The aforementioned nonlinear Schroedinger equations arise in variousapplications, e.g., optics. A bound state (soliton) for such a nonlinear equation represents a particle or beam that travels without disintegrating. An important issue is to understand the stability or instability of such an object. I.e., do they persist under small perturbations or not?Clearly, any commercial application of a soliton in optical media will require stability of the soliton. It turns out that the theoretical understanding of these issues is very difficult, often requiring new insights into mathematical problems. This proposal aims at addressing such problems.
PI:威廉街,加州理工学院的technologydms - 0300081 ---------------------------------------------------- 文摘 :--------------------------------------------- 这个建议处理几个问题在数学物理和谐波分析之间的接口。作者打算继续研究具有确定性势和随机势的薛定谔方程。准周期势线上的离散薛定谔算符仍然存在一些问题,而由非独立但比准周期势更强的混合动力学给出的势的情况则提出了许多严峻的挑战,需要在这方面做更多的工作。对于时变方程,关于色散估计的问题仍然存在,无论是时变的还是时变的势。对于后者,尚不清楚通常的色散估计是否适用于衰减速度快于平方反比功率的势,至少对于二维和更大的维度。作者最近在一维上建立了这一点,但在二维上,在强多项式衰减假设下的色散估计是未知的。然而,他认为,在假设有足够快的衰减电位的二维情况下,色散估计是一个容易解决的问题。线性估计的主要兴趣在于非线性应用。最近由Rodnianski, Soffer和作者建立的弱相互作用多孤子解的渐近稳定性证明给出了一个例子。它严重依赖于电荷转移模型的色散估计。在这个领域还有很多工作要做,无论是在一般的非线性薛定谔方程(临界散焦三维方程的全局解)方面,还是关于非线性束缚态(孤子)动力学的问题。此外,作者打算研究谐波分析中的问题或将其应用于数学物理以外的问题。科学和工程的成功很大程度上取决于它对数学工具的有效使用,无论是在计算机上的建模还是数值研究。数学家在发展这些方法并使其可供科学家和工程师使用方面发挥了重要作用。这一建议的目的是解决大部分源于数学物理的数学问题。上述非线性薛定谔方程出现在各种应用中,例如光学。这种非线性方程的束缚态(孤子)表示粒子或束在运动中不解体。一个重要的问题是理解这样一个物体的稳定性或不稳定性。也就是说,它们在微小的扰动下是否会持续存在?显然,孤子在光学介质中的任何商业应用都需要孤子的稳定性。事实证明,从理论上理解这些问题是非常困难的,通常需要对数学问题有新的见解。这项建议旨在解决这些问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wilhelm Schlag其他文献

Correction to: On Localization and the Spectrum of Multi-frequency Quasi-periodic Operators
  • DOI:
    10.1007/s10013-025-00736-z
  • 发表时间:
    2025-03-27
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Michael Goldstein;Wilhelm Schlag;Mircea Voda
  • 通讯作者:
    Mircea Voda
石英のESR信号強度と結晶化度によるタクラマカン砂漠における砂の供給源と運搬システムの解明
基于ESR信号强度和石英结晶度阐明塔克拉玛干沙漠沙子来源和输送系统
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joachim Krieger;Kenji Nakanishi;Wilhelm Schlag;勝山正則,谷誠;数土直紀;烏田明典
  • 通讯作者:
    烏田明典
A perturbation theory for core operators of Hilbert-Schmidt submodules
Hilbert-Schmidt子模核心算子的摄动理论
On codimension one stability of the soliton for the 1D focusing cubic Klein-Gordon equation
一维聚焦三次Klein-Gordon方程孤子的余维一稳定性
Biharmonic Lagrangean submanifolds in Kaehler manifolds
凯勒流形中的双调和拉格朗日子流形
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Joachim Krieger;Kenji Nakanishi;Wilhelm Schlag;H. Urakawa and S. Maeta
  • 通讯作者:
    H. Urakawa and S. Maeta

Wilhelm Schlag的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wilhelm Schlag', 18)}}的其他基金

Dynamics of Nonlinear and Disordered Systems
非线性和无序系统的动力学
  • 批准号:
    2350356
  • 财政年份:
    2024
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
Spectral Theory and Nonlinear Waves
谱理论和非线性波
  • 批准号:
    2054841
  • 财政年份:
    2021
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Standard Grant
Global Dynamics of Nonlinear Dispersive Evolution Equations and Spectral Theory
非线性色散演化方程的全局动力学和谱理论
  • 批准号:
    1764384
  • 财政年份:
    2018
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Standard Grant
Long-Term Dynamics of Nonlinear Evolution Partial Differential Equations
非线性演化偏微分方程的长期动力学
  • 批准号:
    1842197
  • 财政年份:
    2018
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
Global Dynamics of Nonlinear Dispersive Evolution Equations and Spectral Theory
非线性色散演化方程的全局动力学和谱理论
  • 批准号:
    1902691
  • 财政年份:
    2018
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Standard Grant
Long-Term Dynamics of Nonlinear Evolution Partial Differential Equations
非线性演化偏微分方程的长期动力学
  • 批准号:
    1500696
  • 财政年份:
    2015
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
Global dynamics for nonlinear dispersive equations
非线性色散方程的全局动力学
  • 批准号:
    1160817
  • 财政年份:
    2012
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
Harmonic Analysis, Mathematical Physics, and Nonlinear PDE
调和分析、数学物理和非线性偏微分方程
  • 批准号:
    0653841
  • 财政年份:
    2007
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
Harmonic Analysis with Applications to Mathematical Physics
调和分析及其在数学物理中的应用
  • 批准号:
    0300081
  • 财政年份:
    2003
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
Nonperturbative methods for quasiperiodic discrete Schroedinger equations on the line
在线准周期离散薛定谔方程的非微扰方法
  • 批准号:
    0241930
  • 财政年份:
    2002
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Recent advances in applications of harmonic analysis to convex geometry
会议:调和分析在凸几何中的应用的最新进展
  • 批准号:
    2246779
  • 财政年份:
    2023
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Standard Grant
Multilinear Harmonic Analysis and Applications
多线性谐波分析及应用
  • 批准号:
    2154356
  • 财政年份:
    2022
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Standard Grant
Applications of set theory to abstract harmonic analysis
集合论在抽象调和分析中的应用
  • 批准号:
    RGPIN-2017-05712
  • 财政年份:
    2022
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
  • 批准号:
    2044898
  • 财政年份:
    2021
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
Applications of set theory to abstract harmonic analysis
集合论在抽象调和分析中的应用
  • 批准号:
    RGPIN-2017-05712
  • 财政年份:
    2021
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Discovery Grants Program - Individual
EAGER: CDS&E: Applied geometry and harmonic analysis in deep learning regularization: theory and applications
渴望:CDS
  • 批准号:
    2140982
  • 财政年份:
    2021
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
Free harmonic analysis and applications
免费谐波分析和应用
  • 批准号:
    RGPIN-2016-03796
  • 财政年份:
    2021
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Discovery Grants Program - Individual
Operator Theory and Harmonic Analysis with Applications to Physics
算子理论和调和分析及其在物理学中的应用
  • 批准号:
    553881-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Free harmonic analysis and applications
免费谐波分析和应用
  • 批准号:
    RGPIN-2016-03796
  • 财政年份:
    2020
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Discovery Grants Program - Individual
CDS&E: Applied Geometry and Harmonic Analysis in Deep Learning Regularization: Theory and Applications
CDS
  • 批准号:
    2052525
  • 财政年份:
    2020
  • 资助金额:
    $ 8.55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了