Rational and equivariant phenomena in chromatic homotopy theory

色同伦理论中的有理和等变现象

基本信息

项目摘要

Many of the most productive themes in modern mathematics sit at the intersection of several different fields. This project involves problems in between algebraic topology, number theory, and group theory with some applications to differential geometry and input from algebraic geometry. One of the primary goals of this project is to solve a problem suggested by the work of Morava in the 1970s. A solution to this problem will be an important step toward understanding how spheres of different dimensions can wrap around each other -- a problem that is central to modern algebraic topology. The research will be integrated with the PI's educational efforts at the undergraduate and graduate level.The goal of this project is to make use of recently developed tools to attack several open problems in chromatic homotopy theory. The PI will work with collaborators to show that the rationalization of the monochromatic layers of the sphere spectrum are exterior algebras over the p-adic rationals on certain generators. This problem dates back to the 1970s and is one of the central open problems in chromatic homotopy theory. The PI will also address a question concerning the kernel of the canonical map from the Burnside ring of a finite group to its monochromatic cohomotopy. This question is bound up in the theory of power operations and the theory of fusion systems. Together with graduate students, the PI will develop tools to help produce a universal exponential relationship between multiplicative and additive power operations. Finally, the PI will work with collaborators to build on previous work and advance understanding of the multiplicative properties of global equivariant complexified elliptic genera.This project is jointly funded by the Topology program, and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代数学中许多最富有成效的主题都处于几个不同领域的交叉点。这个项目涉及代数拓扑学,数论和群论之间的问题,以及微分几何和代数几何输入的一些应用。该项目的主要目标之一是解决Morava在20世纪70年代的工作中提出的问题。这个问题的解决方案将是理解不同维度的球体如何相互缠绕的重要一步-这是现代代数拓扑学的核心问题。该研究将与PI在本科和研究生阶段的教育工作相结合。该项目的目标是利用最近开发的工具来解决色同伦理论中的几个开放问题。PI将与合作者合作,证明球谱的单色层的合理化是某些生成元上的p-adic有理数上的外代数。这个问题可以追溯到20世纪70年代,是色同伦理论中的中心开放问题之一。PI还将解决一个问题的核心规范的映射从伯恩赛德环的有限群的单色同伦。这一问题涉及到电力运营理论和融合系统理论。PI将与研究生一起开发工具,以帮助产生乘法和加法幂运算之间的通用指数关系。 最后,PI将与合作者合作,以以前的工作为基础,推进对全局等变复杂椭圆属的乘法性质的理解。该项目由拓扑计划共同资助,以及刺激竞争研究的既定计划(EPSCoR)该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的评估被认为值得支持。影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathaniel Stapleton其他文献

Level structures on p-divisible groups from the Morava E-theory of abelian groups
来自阿贝尔群 Morava E 理论的 p 可整群的能级结构
  • DOI:
    10.1007/s00209-023-03216-7
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Zhen Huan;Nathaniel Stapleton
  • 通讯作者:
    Nathaniel Stapleton

Nathaniel Stapleton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nathaniel Stapleton', 18)}}的其他基金

The Second Transatlantic Transchromatic Homotopy Theory Conference
第二届跨大西洋跨色同伦理论会议
  • 批准号:
    1955705
  • 财政年份:
    2020
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Standard Grant
New Tools in Chromatic Homotopy Theory
色同伦理论的新工具
  • 批准号:
    1906236
  • 财政年份:
    2019
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Standard Grant
Transchromatic homotopy theory
跨色同伦理论
  • 批准号:
    1406408
  • 财政年份:
    2014
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Standard Grant

相似海外基金

Equivariant Schubert calculus for p-compact groups
p-紧群的等变舒伯特微积分
  • 批准号:
    23K03092
  • 财政年份:
    2023
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Equivariant index theory of infinite-dimensional manifolds and related topics
无限维流形等变指数理论及相关主题
  • 批准号:
    23K12970
  • 财政年份:
    2023
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Generalized Steenrod operations and equivariant geometry
广义 Steenrod 运算和等变几何
  • 批准号:
    2305016
  • 财政年份:
    2023
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Standard Grant
Deformation on equivariant completions of vector groups into Fano varieties and K-stability
向量组等变完成变形为 Fano 簇和 K 稳定性
  • 批准号:
    23K03047
  • 财政年份:
    2023
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nested sampling from equivariant Graph Neural Networks
等变图神经网络的嵌套采样
  • 批准号:
    2886221
  • 财政年份:
    2023
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Studentship
Equivariant birational geometry
等变双有理几何
  • 批准号:
    2301983
  • 财政年份:
    2023
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Standard Grant
Applications of equivariant stable homotopy theory
等变稳定同伦理论的应用
  • 批准号:
    2301520
  • 财政年份:
    2023
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Standard Grant
Equivariant Methods in Chromatic Homotopy Theory
色同伦理论中的等变方法
  • 批准号:
    2313842
  • 财政年份:
    2023
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Standard Grant
Borsuk-Ulam type invariants and the existence problem of equivariant maps
Borsuk-Ulam型不变量和等变映射的存在问题
  • 批准号:
    23K03095
  • 财政年份:
    2023
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Operations on equivariant oriented cohomology of homogeneous spaces
齐次空间的等变导向上同调的运算
  • 批准号:
    RGPIN-2022-03060
  • 财政年份:
    2022
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了