RUI: Rapid and high-resolution hyperspectral imaging using frequency combs

RUI:使用频率梳进行快速高分辨率高光谱成像

基本信息

  • 批准号:
    1904704
  • 负责人:
  • 金额:
    $ 21.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Real-time hyperspectral imaging is a powerful method for obtaining an image of an object by recording the way in which light of practically all colors interacts with the object in a point-by-point fashion. However, existing technologies have significant limitations, particularly in how well they can differentiate between the signals of target species and those of the background. With support from the Chemical Measurement and Imaging Program in the Division of Chemistry, Professor Lomsadze and his research group at Santa Clara University are developing and experimentally demonstrating a revolutionary approach to high-speed hyperspectral imaging. This novel method is predicted to provide capabilities that other methods cannot, including being able to "see" the signal of an item of interest against a bright and dynamic background. This is a valuable capability, as it has the potential to afford highly precise visualization of certain tiny items in a sea of others, such as when examining biological tissue, detecting individual particles of toxic materials in mixtures, identifying bacteria or diseased cells in specimens, and examining the surface of the Earth. This newly developed method will enable field-deployable devices for the broad spectrum of applications described above. This research project involves mentoring undergraduate students and educating them on a wide range of cutting-edge optical imaging and detection methods through their hands-on involvement in the design, construction, and use of a laser-based hyperspectral imaging system. These experiences prepare the undergraduate team well for opportunities in graduate school and/or research careers in high-technology industries, such as those in the local Silicon Valley region or elsewhere. The research further enhances Santa Clara University's scientific community and provide excellent directions for meaningful local outreach activities emphasizing cutting-edge, modern technologies for important new signal detection applications.Rapid and high-resolution hyperspectral imaging is an extremely powerful optical method that is used in fundamental science for studying optical properties of materials at the single-particle level. The imaging methods are also widely used outside the research laboratory for practical applications. However, many of these existing imaging methods face challenges in differentiating between signals from the target species and the cluttered background. In addition, the identification process becomes even more complex and near impossible when transitions are inhomogenously broadened and the transitions from different species overlap. Professor Lomsadze and his group at Santa Clara University are developing a novel imaging method that addresses these challenges by use of a method he coinvented, called tri-comb spectroscopy (TCS), a revolutionary approach to laser spectroscopy. TCS is a rapid, high-resolution and background-free optical method that enables the measurement of homogenous linewidth in inhomogenously broadened systems. It also provides information about whether the measured transitions belong to the same or different analytes in a mixture. The development of TCS-based microscopy imaging has a tremendous impact on fundamental chemistry and physics, as it will enable precision measurements of optical properties of materials. Furthermore, it provides a compact and powerful tool for studying the fast dynamics and localization effects of individual quantum systems (molecules, quantum dots and color centers) that are promising candidates for quantum computing. In the long term, this imaging method shows potential for application in tip-enhanced spectroscopy, which is anticipated to enable rapid, high-spectral, and sub-wavelength spatial resolution measurements of single objects, such as nanoparticles. Professor Lomsadze plans for integrating student research, education, and outreach activities, which exposes students, including those from underrepresented groups, to opportunities in the development of sophisticated instruments that address important measurement challenges. The research project also provides the students an experience enriched by participation in outreach activities with companies in Silicon Valley and exploration of future career opportunities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
实时高光谱成像是一种通过记录几乎所有颜色的光以逐点方式与物体相互作用的方式来获得物体图像的强大方法。然而,现有的技术有很大的局限性,特别是在如何区分目标物种的信号和背景的信号。在化学系化学测量和成像项目的支持下,圣克拉拉大学的Lomsadze教授和他的研究小组正在开发和实验性地展示一种革命性的高速高光谱成像方法。预计这种新方法将提供其他方法无法提供的功能,包括能够在明亮和动态背景下“看到”感兴趣项目的信号。这是一种宝贵的能力,因为它有可能在其他海洋中提供某些微小项目的高度精确可视化,例如在检查生物组织,检测混合物中有毒材料的单个颗粒,识别样本中的细菌或患病细胞以及检查地球表面时。这种新开发的方法将使现场部署的设备,上述广泛的应用。该研究项目涉及指导本科生,并通过他们亲自参与设计,建造和使用基于激光的高光谱成像系统来教育他们广泛的尖端光学成像和检测方法。这些经验为本科团队在研究生院和/或高科技行业的研究生涯做好了准备,例如在当地硅谷地区或其他地方。这项研究进一步增强了圣克拉拉大学的科学界,并为有意义的当地推广活动提供了很好的方向,强调尖端的现代技术,用于重要的新信号检测应用。快速和高分辨率的高光谱成像是一种非常强大的光学方法,用于基础科学研究材料的光学性质在单粒子水平。成像方法也广泛用于研究实验室以外的实际应用。然而,这些现有的成像方法中的许多在区分来自目标物种和杂乱背景的信号方面面临挑战。此外,识别过程变得更加复杂,几乎是不可能的,当过渡不均匀加宽和过渡从不同的物种重叠。圣克拉拉大学的Lomsadze教授和他的团队正在开发一种新的成像方法,通过使用他共同发明的称为三梳光谱(TCS)的方法来解决这些挑战,这是一种革命性的激光光谱方法。TCS是一种快速、高分辨率和无背景的光学方法,可以测量非均匀加宽系统中的均匀线宽。它还提供了关于测量的转换是否属于混合物中的相同或不同分析物的信息。 基于TCS的显微成像的发展对基础化学和物理学产生了巨大的影响,因为它将能够精确测量材料的光学特性。此外,它提供了一个紧凑而强大的工具,用于研究单个量子系统(分子,量子点和色心)的快速动力学和局域化效应,这些系统是量子计算的有希望的候选者。从长远来看,这种成像方法显示出在尖端增强光谱学中应用的潜力,预计将能够对纳米颗粒等单个物体进行快速、高光谱和亚波长空间分辨率的测量。教授Lomsadze计划整合学生的研究,教育和推广活动,使学生,包括那些来自代表性不足的群体,在开发复杂的工具,解决重要的测量挑战的机会。 该研究项目还为学生提供了丰富的经验,通过参与与硅谷公司的外联活动和探索未来的职业机会。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Projection-slice four-wave-mixing spectroscopy using frequency combs
使用频率梳的投影切片四波混合光谱
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Lomsadze, Bachana;Weight, Skyler;Clark, Peyton.
  • 通讯作者:
    Clark, Peyton.
Frequency comb-based multidimensional coherent spectroscopy bridges the gap between fundamental science and cutting-edge technology
  • DOI:
    10.1063/5.0047164
  • 发表时间:
    2021-04-28
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Lomsadze, Bachana
  • 通讯作者:
    Lomsadze, Bachana
Single-Shot Fourier-Slice Dual-Comb Spectroscopy
单次傅里叶切片双梳光谱
  • DOI:
    10.1109/lpt.2023.3325799
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Lomsadze, Bachana;Weight, Skyler;Clark, Peyton
  • 通讯作者:
    Clark, Peyton
Effects of phase accumulation in frequency-comb-based multidimensional coherent spectroscopy
基于频梳的多维相干光谱中的相位累积效应
  • DOI:
    10.1103/physreva.106.033704
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Lomsadze, Bachana;Weight, Skyler C.;Hovland, Peter K.
  • 通讯作者:
    Hovland, Peter K.
Frequency-comb-based multidimensional coherent spectroscopy of systems with long-lived excited states*
基于频率梳的长寿命激发态系统的多维相干光谱*
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lomsadze, Bachana;Weight, Skyler;Hovland, Peter.
  • 通讯作者:
    Hovland, Peter.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bachana Lomsadze其他文献

Bachana Lomsadze的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bachana Lomsadze', 18)}}的其他基金

CAREER: Frequency Comb-Based Multidimensional Coherent Spectroscopy and Microscopy at the Nanoscale
职业:基于频率梳的纳米级多维相干光谱和显微镜
  • 批准号:
    2235597
  • 财政年份:
    2023
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

RAPID: A Cost-Effective Approach for Characterizing Variability at High Temporal Resolution for Long Duration on the Continental Slope of the Southern Mid-Atlantic Bight
RAPID:一种经济高效的方法,用于表征大西洋中南部湾大陆坡长期高时间分辨率的变化
  • 批准号:
    2414853
  • 财政年份:
    2024
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
Transcranial Ultrasound Algorithms and Device for Rapid Stroke Determination by Paramedics
用于医护人员快速确定中风的经颅超声算法和设备
  • 批准号:
    10730722
  • 财政年份:
    2023
  • 资助金额:
    $ 21.42万
  • 项目类别:
Characterizing and modulating motor cortical dynamics underlying rapid sequence learning in primates
表征和调节灵长类动物快速序列学习背后的运动皮层动力学
  • 批准号:
    10677450
  • 财政年份:
    2023
  • 资助金额:
    $ 21.42万
  • 项目类别:
The Rapid-Production of the High-Performance and Affordable Cadmium Telluride and Cadmium Zinc Telluride for Medical Imaging Applications.
快速生产用于医学成像应用的高性能且经济实惠的碲化镉和碲化镉锌。
  • 批准号:
    10761330
  • 财政年份:
    2023
  • 资助金额:
    $ 21.42万
  • 项目类别:
Ten-Fold Resolution Boost for Magnetic Particle Imaging with Applications to Rapid, Non-Invasive Imaging of CAR-T Cell Therapies, Stroke, GI Bleeds and Pulmonary Embolisms
磁粒子成像分辨率提高十倍,应用于 CAR-T 细胞疗法、中风、胃肠道出血和肺栓塞的快速、非侵入性成像
  • 批准号:
    10714021
  • 财政年份:
    2023
  • 资助金额:
    $ 21.42万
  • 项目类别:
Determining Mechanisms of Pain Reduction in Chronic Widespread Pain After Rapid Weight Loss in Non-Hispanic Black and Hispanic/Latino/a/x Adults
确定非西班牙裔黑人和西班牙裔/拉丁裔/a/x 成年人快速减肥后慢性广泛疼痛的减轻机制
  • 批准号:
    10591253
  • 财政年份:
    2023
  • 资助金额:
    $ 21.42万
  • 项目类别:
Rapid Free-Breathing 3D High-Resolution MRI for Volumetric Liver Iron Quantification
用于体积肝铁定量的快速自由呼吸 3D 高分辨率 MRI
  • 批准号:
    10742197
  • 财政年份:
    2023
  • 资助金额:
    $ 21.42万
  • 项目类别:
Dye-loaded Nanoparticle Platform for Rapid and Sensitive Vivarium Pathogen Detection
用于快速、灵敏检测动物病原体的负载染料的纳米颗粒平台
  • 批准号:
    10602993
  • 财政年份:
    2023
  • 资助金额:
    $ 21.42万
  • 项目类别:
Rapid, simple, and ultrasensitive quantitation of KRAS ctDNA at the point of care using CRISPR/Cas amplification and digital resolution biosensor microscopy
使用 CRISPR/Cas 扩增和数字分辨率生物传感器显微镜在护理点快速、简单且超灵敏地定量 KRAS ctDNA
  • 批准号:
    10709211
  • 财政年份:
    2023
  • 资助金额:
    $ 21.42万
  • 项目类别:
Rapid non-invasive biomechanical imaging of neural crest cell migration in vivo
体内神经嵴细胞迁移的快速非侵入性生物力学成像
  • 批准号:
    10811154
  • 财政年份:
    2023
  • 资助金额:
    $ 21.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了