Measuring the Dynamics of Excitons in 1D Semiconductor Quantum Wires with Quantum State Resolution

用量子态分辨率测量一维半导体量子线中激子的动力学

基本信息

  • 批准号:
    1905751
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Nontechnical Description: In photovoltaic (PV) devices it would be ideal for every photon that impinges on the device to be absorbed and for at least one electron and one hole to be separately collected as current and electricity with little or no loss of energy within the system, regardless of the color of light or energy of the photon absorbed. PV devices that incorporate semiconductor nanoparticles (NPs) as the absorbing medium offer the advantages of tunable absorption energies through size control and large absorption efficiencies. When light with energy in excess of the band gap of the semiconductor NPs is absorbed, the photogenerated electrons and holes relax down to the lowest-energy states. The efficiency for the charge carrier relaxation depends on numerous factors, including the densities of electron and hole states, the roles and rates of different energy-transfer mechanisms, the temperature, and the chemical environment of the NPs. The research team is synthesizing NPs with varying sizes, shapes, semiconductor materials, and chemically passivated surfaces. Several optical spectroscopy and microscopy techniques are being implemented, and new models are being developed to characterize the relaxation dynamics in the semiconductor NPs. The ultimate goals of the research activities are to not only characterize the relaxation dynamics of the carriers, but to develop novel nanostructures with properties that are optimal for the light-to-electricity conversion of PV devices. The research project is highly interdisciplinary, and graduate and undergraduate students, especially those from underrepresented backgrounds, are gaining the expertise needed to become the next generation of scientists. The educational mission of the principal investigator extends beyond the research team as educational videos on the physics of light and on the importance of alternative energy sources are being developed and disseminated to the public and local schools.Technical Description: The relaxation dynamics and efficiencies of photogenerated electrons and holes in semiconductor nanoparticles (NPs) ultimately limit the yields of photovoltaic devices that incorporate NPs as the absorbing medium. The goals of the research are to accurately characterize the intraband relaxation dynamics (IRD) and mechanisms for carrier relaxation in semiconductor NPs. Specific research activities that include nanoparticle synthesis, electron microcopy and imaging, and optical spectroscopy in both the time- and frequency-domains are characterizing the IRD of the electrons and holes. The team is paying particular attention to the roles of dimensionality and the densities of states on the rates and efficiencies of electron and hole relaxation to the band edge. Carriers in one-dimensional semiconductor quantum wires (QWs) and belts (QBs) can have translational kinetic energy and delocalization along their lengths. This dimensionality gives rise to a continuum of states that can be accessed during carrier relaxation. These one-dimensional NPs contrast those of widely studied zero-dimensional quantum dot (QD) and two-dimensional quantum platelet (QP) systems. Time-resolved transient absorption experiments are performed on NPs with contrasting dimensionality to identify the role of the states, kinetic energy, and momentum on the carrier IRD. A new model, quantum-state renormalization is being developed to help unravel the dynamics from complicated transient absorption spectra recorded on ensembles of the NPs. The efforts are complemented through a long-standing collaboration with the synthetic group of William E. Buhro (Wash. U.) and a new collaboration with the ultrafast spectroscopy group of Martin Zanni (U. Wisconsin).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:在光伏(PV)器件中,理想的是,撞击在器件上的每个光子被吸收,并且至少一个电子和一个空穴被单独收集为电流和电,在系统内几乎没有或没有能量损失,而不管光的颜色或吸收的光子的能量。将半导体纳米颗粒(NPs)作为吸收介质的PV器件通过尺寸控制和大的吸收效率提供可调吸收能量的优点。当具有超过半导体NP的带隙的能量的光被吸收时,光生电子和空穴弛豫到最低能量状态。电荷载流子弛豫的效率取决于许多因素,包括电子和空穴态的密度、不同能量转移机制的作用和速率、温度以及纳米颗粒的化学环境。研究小组正在合成具有不同尺寸,形状,半导体材料和化学钝化表面的纳米粒子。一些光学光谱和显微镜技术正在实施,正在开发新的模型来表征半导体纳米粒子的弛豫动力学。研究活动的最终目标不仅是表征载体的弛豫动力学,而且要开发具有最佳光电转换性能的新型纳米结构。该研究项目是高度跨学科的,研究生和本科生,特别是那些来自代表性不足的背景,正在获得成为下一代科学家所需的专业知识。首席研究员的教育使命不仅限于研究团队,还包括制作关于光物理学和替代能源重要性的教育视频,并向公众和当地学校传播。技术描述:半导体纳米粒子中光生电子和空穴的弛豫动力学和效率最终限制了结合NP作为吸收介质的光伏器件的产率。研究的目标是准确地表征半导体纳米粒子的带内弛豫动力学(IRD)和载流子弛豫机制。具体的研究活动,包括纳米粒子合成,电子显微镜和成像,以及在时域和频域的光谱表征的IRD的电子和空穴。该团队特别关注维度和态密度对电子和空穴弛豫到带边的速率和效率的作用。一维半导体量子线(QW)和量子带(QB)中的载流子可以具有平移动能和沿其长度的离域沿着。这种维度产生了一个连续的状态,可以在载流子弛豫期间访问。这些一维纳米粒子与广泛研究的零维量子点(QD)和二维量子片晶(QP)系统形成对比。时间分辨的瞬态吸收实验进行对比维度的纳米粒子,以确定的状态,动能和动量的载体IRD的作用。一个新的模型,量子态重整化正在开发中,以帮助解开复杂的瞬态吸收光谱上的NPs合奏记录的动态。这些努力通过与William E. Buhro(Wash. U.)的和一个新的合作与超快光谱组的马丁赞尼(美国)。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bound-Ion Pair X-Type Ligation of Cadmium and Zinc Dithiocarbamates on Cadmium Selenide Quantum Belts
硒化镉量子带上二硫代氨基甲酸镉和二硫代氨基甲酸锌的束缚离子对 X 型连接
  • DOI:
    10.1021/acs.inorgchem.2c00226
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Meyer, Hailey M.;Morrison, Calynn E.;Loomis, Richard A.;Buhro, William E.
  • 通讯作者:
    Buhro, William E.
Methods for the ICP-OES Analysis of Semiconductor Materials
  • DOI:
    10.1021/acs.chemmater.0c00255
  • 发表时间:
    2020-03-10
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Morrison, Calynn;Sun, Haochen;Buhro, William E.
  • 通讯作者:
    Buhro, William E.
Photo-Induced State Shifting in 1D Semiconductor Quantum Wires
一维半导体量子线中的光致状态转移
  • DOI:
    10.1021/acs.jpcc.0c04755
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sanderson, William M.;Schrier, Joshua;Loomis, Richard A.
  • 通讯作者:
    Loomis, Richard A.
Intraband Relaxation Dynamics of Charge Carriers within CdTe Quantum Wires
CdTe 量子线内电荷载流子的带内弛豫动力学
  • DOI:
    10.1021/acs.jpclett.0c01326
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sanderson, William M.;Wang, Fudong;Schrier, Joshua;Buhro, William E.;Loomis, Richard A.
  • 通讯作者:
    Loomis, Richard A.
Dynamic Quantum-State Renormalization and Effects of Competing Pathways on Carrier Relaxation in Semiconductor Nanoparticles
  • DOI:
    10.1021/acs.jpcc.3c05672
  • 发表时间:
    2023-10-02
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Chen,Jie;Sanderson,William M.;Loomis,Richard A.
  • 通讯作者:
    Loomis,Richard A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Loomis其他文献

Richard Loomis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Loomis', 18)}}的其他基金

Collaborative Proposal: Probing Undiscovered Reaction Pathways in the Decomposition of Highly-Energized Molecules: Isomerization, Roaming, and Proton-Coupled Electron Transfer
合作提案:探索高能分子分解中未发现的反应途径:异构化、漫游和质子耦合电子转移
  • 批准号:
    2102241
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Investigating the Competition Between Exciton Delocalization and Radiative Recombination in 1D Semiconductor Quantum Wires
研究一维半导体量子线中激子离域与辐射复合之间的竞争
  • 批准号:
    1611149
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Experimental Interrogation of Exciton Dynamics within One-Dimensional Semiconductor Quantum Materials
一维半导体量子材料内激子动力学的实验研究
  • 批准号:
    0906966
  • 财政年份:
    2009
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
CAREER: Experimental Investigation of the Dependence of Intermolecular Dynamics on Molecular Orientation
职业:分子间动力学对分子取向依赖性的实验研究
  • 批准号:
    0346745
  • 财政年份:
    2004
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Systematics of Eutrombicula
真轮藻的系统学
  • 批准号:
    7925107
  • 财政年份:
    1980
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Nanoscale detection of atomic layer spin-valley polarized excitons and revealing its local dynamics
原子层自旋谷极化激子的纳米级探测并揭示其局域动力学
  • 批准号:
    22K14597
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Revealing the Exciton Dynamics and Challenging the Existence of Trapped-Excitons
揭示激子动力学并挑战俘获激子的存在
  • 批准号:
    557117-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Banting Postdoctoral Fellowships Tri-council
Modification of the bandgap of hexagonal BN and deep-ultraviolet luminescence dynamics of excitons in them
六方氮化硼带隙的修饰及其激子的深紫外发光动力学
  • 批准号:
    20K20993
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Ultrafast Dynamics of Strongly Bound Excitons
强束缚激子的超快动力学
  • 批准号:
    546446-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Spin and recombination dynamics of excitons and carries in metal halide perovskites
金属卤化物钙钛矿中激子和载流子的自旋和复合动力学
  • 批准号:
    424153319
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Priority Programmes
Time-, momentum-, and energy-resolved dynamics of excitons and phonons in TMDC/organic hybrids (B17*)
TMDC/有机混合物中激子和声子的时间、动量和能量分辨动力学 (B17*)
  • 批准号:
    427246542
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Collaborative Research Centres
Coherent Quantum Dynamics of Indirect Excitons and Valley Pseudospins in Atomically Thin Semiconductor Heterostructures
原子薄半导体异质结构中间接激子和谷赝自旋的相干量子动力学
  • 批准号:
    1808042
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Coherence and recombination dynamics of excitons in nanostructures: towards excitonics
纳米结构中激子的相干和复合动力学:走向激子学
  • 批准号:
    36947-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of interacting Rydberg excitons in inhomogeneous structures
非均匀结构中相互作用的里德伯激子的动力学
  • 批准号:
    316159498
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Priority Programmes
Coherence and recombination dynamics of excitons in nanostructures: towards excitonics
纳米结构中激子的相干和复合动力学:走向激子学
  • 批准号:
    36947-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了