Collaborative Proposal: Probing Undiscovered Reaction Pathways in the Decomposition of Highly-Energized Molecules: Isomerization, Roaming, and Proton-Coupled Electron Transfer

合作提案:探索高能分子分解中未发现的反应途径:异构化、漫游和质子耦合电子转移

基本信息

  • 批准号:
    2102241
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

With support from the Chemical Structure, Dynamics, and Mechanisms-A (CSDM-A) Program in the Division of Chemistry, Professors Scott Reid at Marquette University and Richard Loomis at Washington University, respectively, will explore competing bimolecular reaction pathways of highly-excited molecules. Energized reactant molecules can relax via multiple mechanisms, including (i) direct bimolecular reactions, (ii) isomerization (changes in molecular structure and connectivity), (iii) roaming (long-range intermolecular interactions that lead to unexpected, secondary products), and proton-coupled electron transfer (PCET) reactions that occur following the initial transfer of an electron or proton from an excited reactant molecule to the other reactant molecule. The understanding of roaming, isomerization, and PCET processes are still at an elementary stage. Reid and Loomis hypothesize the pathways that compete with direct bimolecular reactions are central to many fundamental processes, and they are striving to develop a unified understanding of the factors that dictate their efficiencies and how these pathways dictate the properties of the products. Thus, the research teams led by Professors Reid and Loomis are using a powerful combination of frequency- and time-resolved experiments, together with theory, to unravel the dynamics of these processes. The experiments will be performed in vacuum, in solvents, and in solid matrices, and the energetics and yields of the products are characterized as a function of how much energy is deposited into the reacting molecules. In this manner, the research teams will characterize how these different pathways and their efficiencies are altered by local environment and excitation. The collaborative nature of the research project offers graduate and undergraduate students training in an array of important skill areas, preparing them for careers in science. The project also has a focus on broadening the participation of underrepresented groups in science, technology, engineering, and mathematics (STEM) through a number of complementary initiatives at Marquette and Washington University. A notable component of this program is the development of highly practical courses for at-risk students at the onset of their graduate education. The courses build on a principle of enhancing diversity in STEM, especially in academia, by providing promising scientists with the tools they need to succeed at an early stage.The goal of this collaborative research project led by Professors Scott Reid and Richard Loomis at Marquette University and Washington University-St. Louis, respectively, is the characterization of common features associated with isomerization, roaming, and PCET reactions on ground, excited, and ion radical surfaces. The systems being explored fall into two categories: 1) reaction dynamics of halons including the isomers of di-bromoethane, di-chloroethane, and halothane and their partially deuterated analogs, and 2) reactions of ionized complexes of ammonia with halobenzenes. These target systems, the halons, are environmentally important, are expected to demonstrate the full range of reaction pathways listed above, and yet are small enough to be tractable to high-level theoretical methods. The complementary and overlapping skill sets and techniques in the two laboratories enable experiments to be undertaken with high sensitivity, energy resolution, and temporal resolution. Specifically, frequency-resolved fluorescence-based spectroscopy, frequency- and time-resolved ion time-of-flight velocity mapped imaging experiments, ultrafast transient absorption spectroscopy, and infrared excitation experiments are being pursued. These reaction systems were chosen, in part, because of the ability to probe the properties of the parent molecules (or complexes) and all of the product channels (molecular and atomic) with high sensitivity. The selected systems are also being investigated in detail using computational methods, with the experimental results providing stringent tests and milestones for ongoing development of the theory. Important challenges in this research effort include state-specific preparation of the reactants and state-resolved detection of the products, challenges that are being overcome through the combined effort of the two resewarch groups. Student training opportunities and an emphasis on broadening participation in STEM education and research further broaden the impacts of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学结构、动力学和机理-A(CSDM-A)项目的支持下,马奎特大学的斯科特·里德教授和华盛顿大学的理查德·卢米斯教授将分别探索高激发分子的竞争性双分子反应途径。通电的反应物分子可以通过多种机制松弛,包括(i)直接双分子反应,(ii)异构化(分子结构和连通性的变化),(iii)漫游(长距离分子间相互作用,导致意外的次级产物),质子耦合电子转移(PCET)在电子或质子从一个受激反应物分子到另一个反应物分子的初始转移之后发生的反应。对漫游、异构化和PCET过程的理解仍处于初级阶段。 Reid和卢米斯假设与直接双分子反应竞争的途径是许多基本过程的核心,他们正在努力发展对决定其效率的因素以及这些途径如何决定产物性质的统一理解。 因此,由Reid教授和卢米斯教授领导的研究小组正在使用频率和时间分辨实验的强大组合,以及理论,来解开这些过程的动力学。 实验将在真空中,在溶剂中,并在固体基质中进行,和能量和产品的产量的特点是多少能量沉积到反应分子的函数。通过这种方式,研究团队将描述这些不同的途径及其效率如何被当地环境和激励所改变。该研究项目的协作性质为研究生和本科生提供了一系列重要技能领域的培训,为他们的科学生涯做好准备。该项目还侧重于通过马奎特和华盛顿大学的一些补充举措,扩大代表性不足的群体在科学,技术,工程和数学(STEM)方面的参与。该计划的一个值得注意的组成部分是在研究生教育开始时为处于风险中的学生开发高度实用的课程。这些课程建立在增强STEM多样性的原则上,特别是在学术界,通过为有前途的科学家提供他们在早期阶段取得成功所需的工具。这个由马奎特大学和华盛顿大学圣路易斯分校的斯科特·里德教授和理查德·卢米斯教授领导的合作研究项目的目标分别是表征与异构化,漫游,和PCET反应在地面上,激发,和离子自由基表面。正在探索的系统分为两类:1)哈龙的反应动力学,包括二溴乙烷,二氯乙烷和氟烷及其部分氘代类似物的异构体,和2)氨与卤代苯的电离络合物的反应。这些目标系统,即哈龙,对环境具有重要意义,预计将展示上文所列的全部反应途径,但其体积足够小,易于采用高级理论方法。两个实验室的互补和重叠的技能和技术使实验能够以高灵敏度,能量分辨率和时间分辨率进行。具体而言,频率分辨荧光光谱,频率和时间分辨离子飞行时间速度映射成像实验,超快瞬态吸收光谱,和红外激发实验正在进行中。选择这些反应系统部分是因为它们能够以高灵敏度探测母体分子(或复合物)和所有产物通道(分子和原子)的性质。选定的系统也正在使用计算方法进行详细研究,实验结果为理论的持续发展提供了严格的测试和里程碑。这项研究工作中的重要挑战包括反应物的特定状态制备和产物的状态分辨检测,这些挑战正在通过两个研究小组的共同努力来克服。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响力审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-adiabatic dissociation dynamics of Ar⋯I2 (E, v) intermolecular vibrational levels probed using velocity-map imaging
使用速度图成像探测 ArââI2 (E, v) 分子间振动水平的非绝热解离动力学
  • DOI:
    10.1063/5.0166512
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Makarem, Camille;Loomis, Richard A.
  • 通讯作者:
    Loomis, Richard A.
Characterization of the intermolecular vibrational levels bound within the Ar + I2(E, v) potential energy surfaces
Ar × I2(E, v) 势能面内分子间振动能级的表征
  • DOI:
    10.1016/j.cplett.2023.140642
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Makarem, Camille;Loomis, Richard A.
  • 通讯作者:
    Loomis, Richard A.
Probing the Dependence of Long-Range, Four-Atom Interactions on Intermolecular Orientation. 4. The Dissociation Dynamics of H2/D2···ICl(B,v′=3) and the Observation of Efficient Vibrational–Rotational Energy Transfer
探讨长程四原子相互作用对分子间取向的依赖性。
  • DOI:
    10.1021/acs.jpca.2c05817
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Darr, Joshua P.;Loomis, Richard A.
  • 通讯作者:
    Loomis, Richard A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Loomis其他文献

Richard Loomis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Loomis', 18)}}的其他基金

Measuring the Dynamics of Excitons in 1D Semiconductor Quantum Wires with Quantum State Resolution
用量子态分辨率测量一维半导体量子线中激子的动力学
  • 批准号:
    1905751
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Investigating the Competition Between Exciton Delocalization and Radiative Recombination in 1D Semiconductor Quantum Wires
研究一维半导体量子线中激子离域与辐射复合之间的竞争
  • 批准号:
    1611149
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Experimental Interrogation of Exciton Dynamics within One-Dimensional Semiconductor Quantum Materials
一维半导体量子材料内激子动力学的实验研究
  • 批准号:
    0906966
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Experimental Investigation of the Dependence of Intermolecular Dynamics on Molecular Orientation
职业:分子间动力学对分子取向依赖性的实验研究
  • 批准号:
    0346745
  • 财政年份:
    2004
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Systematics of Eutrombicula
真轮藻的系统学
  • 批准号:
    7925107
  • 财政年份:
    1980
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

RESEARCH PROPOSAL What is your project title? Development of additive manufactured polymeric seals for low molecular weight gases
研究计划 您的项目名称是什么?
  • 批准号:
    2908868
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Studentship
Development of a low-pressure loss air purification device using rotating porous media and a proposal for its use in ventilation systems
使用旋转多孔介质的低压损失空气净化装置的开发及其在通风系统中的使用建议
  • 批准号:
    24K17404
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Proposal Title : NemeSys - Smart Multiphasic Nanoreactors Based On Tailored Foams for Direct H2O2 Synthesis
提案标题:NemeSys - 基于定制泡沫的智能多相纳米反应器,用于直接合成 H2O2
  • 批准号:
    EP/Y034392/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Conference: Supporting Mentoring in STEM Graduate Education: A Proposal for Virtual Workshops and Supporting Activities
会议:支持 STEM 研究生教育辅导:虚拟研讨会和支持活动的提案
  • 批准号:
    2413980
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Time-Sharing Experiments for the Social Sciences (TESS): Proposal for Renewed Support, 2020-2023
合作研究:社会科学分时实验(TESS):2020-2023 年更新支持提案
  • 批准号:
    2424057
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
  • 批准号:
    2309022
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Travel: Texas Power and Energy Conference (TPEC) 2024 Travel Proposal
旅行:德克萨斯州电力与能源会议 (TPEC) 2024 年旅行提案
  • 批准号:
    2341300
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Business and Local Government Data Research Centre Legacy Status Proposal
企业和地方政府数据研究中心遗留状态提案
  • 批准号:
    ES/Y003411/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Lite(House) - A Financially Flexible, Adaptive and Efficient Live/Work Housing Proposal
Lite(House) - 财务灵活、适应性强且高效的生活/工作住房提案
  • 批准号:
    10071140
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Collaborative R&D
Proposal of effective utilization of polyphenols as functional food ingredients for realization of a healthy longevity society
有效利用多酚作为功能性食品成分以实现健康长寿社会的提案
  • 批准号:
    23K10889
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了