Enabling fast and efficient nonaqueous ion (co-)intercalation for high energy density charge storage via systematic interfacial design
通过系统化的界面设计实现快速高效的非水离子(共)嵌入以实现高能量密度电荷存储
基本信息
- 批准号:1905803
- 负责人:
- 金额:$ 54.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical SummaryUnderstanding the principles of how ions move into lithium-ion battery electrodes is crucial in making reliable and safe batteries that store energy by storing lithium. However, big knowledge gaps remain in the understanding of how these principles apply to other ions such as potassium, sodium, and magnesium; all of these ions are crucial components of exciting next-generation batteries. This project, supported by the Solid State and Materials Chemistry program at NSF, introduces ultra-thin electrodes, which are composed of a few atom-thick flat layers of carbon, so-called few-layer graphene (FLG), as a platform for identifying problems during the storage of a broad range of ions. Because FLG is so thin, experiments can be performed very quickly. On this project researchers use techniques for seeing through FLG easily, and perform reliable quantum calculations mimicking their behavior. This allows them to swiftly evaluate ion storage performance and to learn fundamental principles impacting battery systems at large. This project aligns to NSF's mission of promoting the progress of science and advancing national prosperity by creating new knowledge on strategic materials for energy storage, such as batteries. This helps the USA to remain at the forefront of science. In order to contribute towards these greater objectives, the PI and co-PI, both identifying with Hispanic communities, offer programs that enrich and make a positive impact on student's learning and scientific life. This is achieved by providing direct educational and research opportunities to undergraduate and K-12 audiences through laboratory experiences and training, and through computational and social media resources. Technical SummaryThe goal of this project, supported by the Solid State and Materials Chemistry program at NSF, is to address challenges in the fundamental understanding of interfacial phenomena faced during ion intercalation on graphitic hosts. While several studies have addressed lithium intercalation kinetics and mechanisms, comparatively fewer have done so on other alkali ions, anions, and multivalent cations. The scope of this project is to use a versatile platform consisting of few-layer graphene (FLG) electrodes which enable high-fidelity, fast, and efficient electrochemistry to address this knowledge gap in a timely manner. FLG electrodes improve experimental throughput with true interfacial selectivity, allowing to swiftly identify and overcome interfacial kinetic barriers. Studies are complemented with insightful compositional analysis, in situ characterization, and robust quantum simulation methods for providing a deep understanding of the intercalation process. This project generates knowledge on the impact of heteroatom surface modification and ion co-intercalation on the kinetics and mechanisms of ion insertion for next generation batteries in an accelerated manner. The identification of PI and co-PI with Hispanic audiences and other underrepresented minority groups helps preparing them to tackle future challenges in energy technologies through demonstrations, laboratory experiences, and social media tools. This project aligns to NSF's mission of promoting the progress of science and advancing national prosperity by providing fundamental understanding of strategic materials for energy storage, creating transformative knowledge for allowing the USA to remain at the forefront of science, and contributing to NSF's 10 Big Ideas by growing convergence research through interdisciplinarity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解离子如何进入锂离子电池电极的原理对于制造可靠和安全的电池至关重要,这种电池通过储存锂来储存能量。然而,对于这些原理如何应用于其他离子,如钾、钠和镁,仍然存在很大的知识空白;所有这些离子都是下一代电池的关键组成部分。该项目由美国国家科学基金会固态和材料化学项目支持,引入了超薄电极,它由几个原子厚度的平面碳层组成,即所谓的少层石墨烯(FLG),作为识别大范围离子存储过程中的问题的平台。由于FLG非常薄,实验可以非常快速地进行。在这个项目中,研究人员使用技术很容易地看穿FLG,并进行可靠的量子计算来模拟它们的行为。这使他们能够快速评估离子存储性能,并了解影响电池系统的基本原理。该项目与NSF的使命一致,即通过创造关于储能战略材料(如电池)的新知识,促进科学进步和国家繁荣。这有助于美国保持在科学的前沿。为了实现这些更大的目标,PI和co-PI都认同西班牙裔社区,提供丰富并对学生的学习和科学生活产生积极影响的项目。这是通过实验室经验和培训,以及通过计算和社会媒体资源,为本科生和K-12观众提供直接的教育和研究机会来实现的。该项目由美国国家科学基金会固态和材料化学项目支持,旨在解决在石墨基体上离子插入过程中所面临的界面现象的基本理解方面的挑战。虽然有一些研究已经解决了锂的嵌入动力学和机制,但相对而言,对其他碱离子、阴离子和多价阳离子的研究较少。该项目的范围是使用由少层石墨烯(FLG)电极组成的多功能平台,实现高保真、快速、高效的电化学,及时解决这一知识缺口。FLG电极通过真正的界面选择性提高了实验吞吐量,允许快速识别和克服界面动力学障碍。研究补充了富有洞察力的成分分析,原位表征和强大的量子模拟方法,以提供对插层过程的深刻理解。该项目加速了杂原子表面修饰和离子共插对下一代电池离子插入动力学和机制的影响。与西班牙裔观众和其他代表性不足的少数群体确定PI和co-PI,有助于他们通过演示、实验室经验和社交媒体工具应对未来能源技术方面的挑战。该项目符合NSF的使命,即通过提供对储能战略材料的基本理解,创造变革性知识,使美国保持在科学的前沿,促进科学进步和促进国家繁荣,并通过跨学科的融合研究为NSF的10大理念做出贡献。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electrochemical Imaging of Interfaces in Energy Storage via Scanning Probe Methods: Techniques, Applications, and Prospects
通过扫描探针方法对储能界面进行电化学成像:技术、应用和前景
- DOI:10.1146/annurev-anchem-091422-110703
- 发表时间:2023
- 期刊:
- 影响因子:8
- 作者:Mishra, Abhiroop;Sarbapalli, Dipobrato;Rodríguez, Oliver;Rodríguez-López, Joaquín
- 通讯作者:Rodríguez-López, Joaquín
Impact of Surface Modification on the Lithium, Sodium, and Potassium Intercalation Efficiency and Capacity of Few-Layer Graphene Electrodes
表面改性对少层石墨烯电极锂、钠、钾嵌入效率和容量的影响
- DOI:10.1021/acsami.9b23105
- 发表时间:2020
- 期刊:
- 影响因子:9.5
- 作者:Nijamudheen, A.;Sarbapalli, Dipobrato;Hui, Jingshu;Rodríguez-López, Joaquín;Mendoza-Cortes, Jose L.
- 通讯作者:Mendoza-Cortes, Jose L.
A Surface Modification Strategy Towards Reversible Na-ion Intercalation on Graphitic Carbon Using Fluorinated Few-Layer Graphene
使用氟化少层石墨烯在石墨碳上实现可逆钠离子嵌入的表面改性策略
- DOI:10.1149/1945-7111/ac9c33
- 发表时间:2022
- 期刊:
- 影响因子:3.9
- 作者:Sarbapalli, Dipobrato;Lin, Yu-Hsiu;Stafford, Sean;Son, Jangyup;Mishra, Abhiroop;Hui, Jingshu;Nijamudheen, A;Romo, Adolfo I.;Gossage, Zachary T.;van der Zande, Arend M.
- 通讯作者:van der Zande, Arend M.
Pt/Polypyrrole Quasi-References Revisited: Robustness and Application in Electrochemical Energy Storage Research
铂/聚吡咯准参考文献重温:电化学储能研究中的鲁棒性及其应用
- DOI:10.1021/acs.analchem.1c03552
- 发表时间:2021
- 期刊:
- 影响因子:7.4
- 作者:Sarbapalli, Dipobrato;Mishra, Abhiroop;Rodríguez-López, Joaquín
- 通讯作者:Rodríguez-López, Joaquín
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joaquin Rodriguez Lopez其他文献
Joaquin Rodriguez Lopez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joaquin Rodriguez Lopez', 18)}}的其他基金
Quantifying Surface Chemical Intermediates and Interfacial Redox Processes via Combined Raman Spectroscopy and Scanning Electrochemical Microscopy
通过拉曼光谱和扫描电化学显微镜相结合量化表面化学中间体和界面氧化还原过程
- 批准号:
2004054 - 财政年份:2020
- 资助金额:
$ 54.73万 - 项目类别:
Standard Grant
Understanding the Reactive Evolution of Ion-Battery Interfaces through a Versatile Single-Site Ionic Interrogation and Imaging Toolset
通过多功能单点离子询问和成像工具集了解离子电池界面的反应演化
- 批准号:
1709391 - 财政年份:2017
- 资助金额:
$ 54.73万 - 项目类别:
Continuing Grant
Elucidating the Impact of Electrostatic Interactions and Number of Layers on the Mechanisms of Ion Intercalation on Graphene Electrodes
阐明静电相互作用和层数对石墨烯电极离子嵌入机制的影响
- 批准号:
1611268 - 财政年份:2016
- 资助金额:
$ 54.73万 - 项目类别:
Continuing Grant
相似国自然基金
基于FAST搜寻及观测的脉冲星多波段辐射机制研究
- 批准号:12403046
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:青年科学基金项目
FAST连续观测数据处理的pipeline开发
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于神经网络的FAST馈源融合测量算法研究
- 批准号:12363010
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
使用FAST开展河外中性氢吸收线普查
- 批准号:12373011
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
基于FAST的射电脉冲星搜索和候选识别的深度学习方法研究
- 批准号:12373107
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
基于FAST观测的重复快速射电暴的统计和演化研究
- 批准号:12303042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用FAST漂移扫描多科学目标同时巡天宽带谱线数据研究星系中性氢质量函数
- 批准号:12373012
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
基于FAST高灵敏度和高谱分辨中性氢数据的暗星系的系统搜寻与研究
- 批准号:12373001
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
基于FAST望远镜及超级计算的脉冲星深度搜寻和研究
- 批准号:12373109
- 批准年份:2023
- 资助金额:55.00 万元
- 项目类别:面上项目
基于FAST的纳赫兹引力波研究
- 批准号:LY23A030001
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Unary Computing in Memory for Fast, Robust and Energy-Efficient Processing
职业:内存中的一元计算,实现快速、稳健和节能的处理
- 批准号:
2339701 - 财政年份:2024
- 资助金额:
$ 54.73万 - 项目类别:
Continuing Grant
CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
- 批准号:
2340194 - 财政年份:2024
- 资助金额:
$ 54.73万 - 项目类别:
Continuing Grant
LEAPS-MPS: Fast and Efficient Novel Algorithms for MHD Flow Ensembles
LEAPS-MPS:适用于 MHD 流系综的快速高效的新颖算法
- 批准号:
2425308 - 财政年份:2024
- 资助金额:
$ 54.73万 - 项目类别:
Standard Grant
CO2 to biochar: harnessing the potential of a fast-growing cyanobacterium for cost-efficient carbon capture utilisation and storage
二氧化碳转化为生物炭:利用快速生长的蓝细菌的潜力,实现具有成本效益的碳捕获利用和储存
- 批准号:
10078004 - 财政年份:2023
- 资助金额:
$ 54.73万 - 项目类别:
Collaborative R&D
Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
- 批准号:
10760164 - 财政年份:2023
- 资助金额:
$ 54.73万 - 项目类别:
Fast, efficient and reliable: digital qualification of ultrasonic inspection for safety-critical components
快速、高效、可靠:安全关键部件超声波检测的数字化鉴定
- 批准号:
EP/X02427X/1 - 财政年份:2023
- 资助金额:
$ 54.73万 - 项目类别:
Research Grant
FET: Small: AlignMEM: Fast and Efficient DNA Sequence Alignment in Non-Volatile Magnetic RAM
FET:小型:AlignMEM:非易失性磁性 RAM 中快速高效的 DNA 序列比对
- 批准号:
2349802 - 财政年份:2023
- 资助金额:
$ 54.73万 - 项目类别:
Standard Grant
A nanosized magnetic particle system for fast and efficient neuronal extracellular vesicle enrichment from plasma
一种纳米磁性粒子系统,用于从血浆中快速有效地富集神经元细胞外囊泡
- 批准号:
10820640 - 财政年份:2023
- 资助金额:
$ 54.73万 - 项目类别:
Developing Efficient Numerical Algorithms Using Fast Bayesian Random Forests
使用快速贝叶斯随机森林开发高效的数值算法
- 批准号:
2748743 - 财政年份:2022
- 资助金额:
$ 54.73万 - 项目类别:
Studentship














{{item.name}}会员




