Geometry and Topology of Polyhedral Surfaces

多面体表面的几何和拓扑

基本信息

  • 批准号:
    1405106
  • 负责人:
  • 金额:
    $ 17.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-15 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

Polyhedral surfaces are produced at an alarming rate ranging from 3-D scanning to medical imaging in the digital world these days. Almost all surfaces appeared in any computer screen are polyhedral surfaces. An urgent task is to produce a coarse categorization and classification of these surfaces. A mile stone result in mathematics dealing with surfaces is the classical uniformization theorem of Poincare-Koebe. It is an extremely powerful tool to classify smooth surfaces in the 3-space up to angle preserving diffeomorphisms (i.e., conformality). However, to algorithmically implement the classical uniformization theorem is very difficult. The PI and his collaborators introduced a discrete counterpart of conformality and proved a discrete version of uniformization theorem for polyhedral surfaces recently. This proposal investigates theoretically whether the discrete conformal geometry converges to the smooth conformal geometry as triangulation meshes become finer and finer. The numerical evidences for the convergence are very strong. The successful resolution of the convergence issue will have impacts on the applications of the discrete uniformization theorem in many fields.The classical uniformization theorem of Poincare and Koebe is the most powerful tool to classify smooth surfaces with Riemannian metrics according to conformal diffeomorphisms. This theorem is one of the pillars of the 20th century mathematics and has a wide range of applications within and outside mathematics. However, it is very difficult to use it algorithmically for categorizing polyhedral surfaces. Luo and his collaborators introduced a notion of discrete conformality for polyhedral surfaces and proved a discrete uniformization theorem recently. Two main features of the discrete conformality are the following. First, the discrete conformality is algorithmic and second, there exists a finite dimensional (convex) variational principle to find the discrete uniformization metric. The goal of the proposal is to investigate several major remaining issues in the discrete conformal geometry of polyhedral surfaces. For instance, there are strong numerical evidences suggesting that the discrete conformality converges to smooth (classical) conformality when the triangulations are suitably chosen. However, a theoretical proof of it is still lacking. This is the main problem to be resolved in the proposal. Luo plans to use the finite dimensional variational principles that he developed in the past 10 years to approach the convergence problem.
如今,从3D扫描到数字世界中的医学成像,多面体表面以惊人的速度产生。几乎所有出现在计算机屏幕上的曲面都是多面体曲面。一个紧迫的任务是产生一个粗略的分类和分类这些表面。数学中处理曲面的一个里程碑式的结果是经典的庞加莱-柯比单值化定理。 它是一个非常强大的工具,可以对3-空间中的光滑表面进行分类,直到保持角度的微分同胚(即,保形性)。然而,经典的一致化定理的算法实现是非常困难的。PI和他的合作者最近引入了一个离散对应的共形性,并证明了一个离散版本的多面体曲面的单值化定理。该方案从理论上研究了当三角剖分网格越来越细时,离散共形几何是否收敛到光滑共形几何。 收敛的数值证据是非常强大的。 离散一致化定理的收敛性问题的成功解决将影响离散一致化定理在许多领域的应用,经典的Poincare和Koebe一致化定理是对具有黎曼度量的光滑曲面进行共形同态分类的最有力的工具。 该定理是20世纪世纪数学的支柱之一,在数学内外有着广泛的应用。然而,它是非常困难的算法使用它来分类多面体表面。最近,Luo和他的合作者引入了多面体曲面的离散共形性的概念,并证明了一个离散单值化定理。离散保形性的两个主要特征如下。首先,离散保形性是算法的,其次,存在一个有限维(凸)变分原理来找到离散一致化度量。该建议的目标是调查几个主要的剩余问题,在多面体表面的离散保形几何。例如,有强有力的数值证据表明,离散保形收敛到光滑(经典)保形时,三角剖分是适当的选择。然而,它的理论证明仍然缺乏。这是建议中要解决的主要问题。罗计划使用他在过去10年中开发的有限维变分原理来解决收敛问题。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A DISCRETE UNIFORMIZATION THEOREM FOR POLYHEDRAL SURFACES
  • DOI:
    10.4310/jdg/1527040872
  • 发表时间:
    2018-06-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Gu, Xianfeng David;Luo, Feng;Wu, Tianqi
  • 通讯作者:
    Wu, Tianqi
A discrete uniformization theorem for polyhedral surfaces II
  • DOI:
    10.4310/jdg/1531188190
  • 发表时间:
    2014-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    X. Gu;Ren Guo;F. Luo;Jian Sun;Tianqi Wu
  • 通讯作者:
    X. Gu;Ren Guo;F. Luo;Jian Sun;Tianqi Wu
Pseudo-developing maps for ideal triangulations II: Positively oriented ideal triangulations of cone-manifolds
理想三角剖分的伪展开图 II:锥流形的正向理想三角剖分
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Feng Luo其他文献

Function and potential application of quorum sensing in nitrogen-removing functional bacteria: a review
群体感应在脱氮功能细菌中的功能和潜在应用:综述
  • DOI:
    10.5004/dwt.2021.27373
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Feng Luo;Huizhi Hu;Yirong Liu
  • 通讯作者:
    Yirong Liu
Diagnosis prevention and treatment for PICC‐related upper extremity deep vein thrombosis in breast cancer patients
乳腺癌患者PICC相关上肢深静脉血栓的诊治
  • DOI:
    10.1111/j.1743-7563.2011.01508.x
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Xing;Vishnu Prasad Adhikari;Hong Liu;Ling;Sheng;Hong Yuan Li;G. Ren;Feng Luo;Kai
  • 通讯作者:
    Kai
Degradation of sulfonamides and formation of trihalomethanes by chlorination after pre-oxidation with Fe(VI)
Fe(VI) 预氧化后氯化降解磺酰胺并形成三卤甲烷
  • DOI:
    10.1016/j.jes.2018.01.016
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Tuqiao Zhang;Feilong Dong;Feng Luo;Cong Li
  • 通讯作者:
    Cong Li
Abnormal elastic behaviour of poly(2-ureidoethyl methacrylate) physical hydrogels
聚(2-脲基乙基甲基丙烯酸酯)物理水凝胶的异常弹性行为
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taolin Sun;Takayuki Nonoyama;Yoshiyuki Saruwatari;Feng Luo;Takayuki Kurokawa;Tasuku Nakajima;Abu Bin Ihsan;Jian Ping Gong
  • 通讯作者:
    Jian Ping Gong
Synthesis and characterization of PLGA-PEG-PLGA based thermosensitive polyurethane micelles for potential drug delivery
用于潜在药物输送的基于 PLGA-PEG-PLGA 的热敏聚氨酯胶束的合成和表征
  • DOI:
    10.1080/09205063.2020.1854413
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Min Wang;Jianghao Zhan;Laijun Xu;Yanjun Wang;Dan Lu;Zhen Li;Jiyao Li;Feng Luo;Hong Tan
  • 通讯作者:
    Hong Tan

Feng Luo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Feng Luo', 18)}}的其他基金

ATD: Algorithms and Geometric Methods for Community and Anomaly Detection and Robust Learning in Complex Networks
ATD:复杂网络中社区和异常检测以及鲁棒学习的算法和几何方法
  • 批准号:
    2220271
  • 财政年份:
    2023
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Standard Grant
Travel: NSF Student Travel Grant for 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
旅费:2021 年 IEEE 国际生物信息学和生物医学会议 (BIBM) 的 NSF 学生旅费补助金
  • 批准号:
    2131662
  • 财政年份:
    2021
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Cyberinstrument for AI-Enabled Computational Science & Engineering
MRI:购买用于人工智能计算科学的网络仪器
  • 批准号:
    2018069
  • 财政年份:
    2020
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Geometric and Topological Methods for Analyzing Shapes
FRG:协作研究:分析形状的几何和拓扑方法
  • 批准号:
    1760527
  • 财政年份:
    2018
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Standard Grant
ABI Innovation: Fast Algorithms and Tools for Single-Molecule Sequencing Reads
ABI 创新:单分子测序读取的快速算法和工具
  • 批准号:
    1759856
  • 财政年份:
    2018
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Standard Grant
Discrete Conformal Geometry of Surfaces and Applications
曲面的离散共形几何及其应用
  • 批准号:
    1811878
  • 财政年份:
    2018
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Theory and Algorithms for Discrete Curvatures on Network Data from Human Mobility and Monitoring
合作研究:ATD:人体移动和监测网络数据离散曲率的理论和算法
  • 批准号:
    1737876
  • 财政年份:
    2017
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: ATD: Algorithmic Aspects of Geometry for Using LIDAR and Wireless Sensor Networks for Combating Chemical Terror Attacks
合作研究:ATD:使用激光雷达和无线传感器网络对抗化学恐怖袭击的几何算法
  • 批准号:
    1222663
  • 财政年份:
    2012
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Standard Grant
Teichmuller Theory and Quantum Topology
泰希米勒理论和量子拓扑
  • 批准号:
    1207832
  • 财政年份:
    2012
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Standard Grant
Volume Optimization on Triangulated 3-Manifolds.
三角 3 流形的体积优化。
  • 批准号:
    1105808
  • 财政年份:
    2011
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
  • 批准号:
    2348830
  • 财政年份:
    2024
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Standard Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Standard Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
  • 批准号:
    2340394
  • 财政年份:
    2024
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Continuing Grant
Conference: Midwest Topology Seminar
会议:中西部拓扑研讨会
  • 批准号:
    2341204
  • 财政年份:
    2024
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Standard Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
  • 批准号:
    2300172
  • 财政年份:
    2024
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Continuing Grant
Algebraic Structures in String Topology
弦拓扑中的代数结构
  • 批准号:
    2405405
  • 财政年份:
    2024
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
  • 批准号:
    2349401
  • 财政年份:
    2024
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
  • 批准号:
    2340465
  • 财政年份:
    2024
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Continuing Grant
CAREER: Elucidating the Impact of Side-Chain Topology on the Structure-Property Relationship in Bottlebrush Polymers
职业:阐明侧链拓扑对洗瓶刷聚合物结构-性能关系的影响
  • 批准号:
    2340664
  • 财政年份:
    2024
  • 资助金额:
    $ 17.17万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了