Contact geometry, Heegaard Floer homology and open book decompositions
接触几何、Heegaard Floer 同调和开卷分解
基本信息
- 批准号:1205933
- 负责人:
- 金额:$ 13.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-15 至 2012-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principle investigator endeavors to deepen our understanding of geometric objects on 3-manifolds called contact structures. In recent years, contact structures have moved to the forefront of mathematical interest after featuring prominently in the resolution of several long-standing conjectures. The first goal of this project is to probe connections linking contact structures and Heegaard Floer invariants. Since it's introduction roughly a decade ago, Heegaard Floer theory has revolutionized the study of knots, 3-manifolds and smooth 4-manifolds. This project seeks to better understand how geometric properties of contact structures imprint themselves in the algebraic formalism of Heegaard Floer invariants. The project's second goal is to study connections between geometric characteristics of contact structures and topological properties of the open book decompositions that support them. Specifically, the principle investigator aims to develop obstructions to contact structures having support genus one and to find lower bounds for the binding number. Finally, the project seeks to broaden our understanding of Legendrian and transverse knot theory. To accomplish this, the principle investigator aims to develop new Legendrian and transverse invariants and to apply these and other known invariants to classify Legendrian and transverse representatives in a broad class of knot types.The principle investigator seeks to broaden our understanding of 3 and 4-dimensional spaces by studying geometric objects called contact structures. Contact structures first appeared in physics through the work of Hamilton, Huygens and Jacobi on geometric optics. They provide a natural language for studying optics, classical mechanics and thermodynamics, and have applications in many subfields of physics and mathematics. They are a tool one can use to probe 3 and 4-dimensional spaces to better understand their shape and geometric structure. The development of techniques for studying these spaces ultimately helps to informs us about the topological and geometric characteristics of our own universe.
这位主要研究者努力加深我们对三维流形上的几何对象的理解,这些几何对象被称为接触结构。近年来,接触结构在解决了几个长期存在的猜想后,已经成为数学兴趣的前沿。这个项目的第一个目标是探索连接触点结构和Heegaard Floer不变量的联系。自从大约十年前提出以来,Heegaard Floer理论给纽结、三维流形和光滑四维流形的研究带来了革命性的变化。这个项目试图更好地理解接触结构的几何性质如何印记在Heegaard Floer不变量的代数形式中。该项目的第二个目标是研究接触结构的几何特征与支持它们的开卷分解的拓扑性质之间的联系。具体地说,主要调查者的目标是开发接触具有支撑属1的结构的障碍,并找到结合数的下界。最后,该项目试图拓宽我们对传奇理论和横向纽结理论的理解。为了实现这一点,主要研究者致力于发展新的勒让德不变量和横向不变量,并应用这些不变量和其他已知的不变量来分类纽结类型中的勒让德和横向代表。主要研究者试图通过研究称为接触结构的几何对象来扩展我们对三维和四维空间的理解。通过哈密尔顿、惠更斯和雅各比在几何光学方面的工作,接触结构最早出现在物理学中。它们为研究光学、经典力学和热力学提供了一种自然语言,并在物理和数学的许多子领域中都有应用。它们是一种工具,人们可以用来探测三维和四维空间,以更好地了解它们的形状和几何结构。研究这些空间的技术的发展最终有助于我们了解我们自己宇宙的拓扑和几何特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Vela-Vick其他文献
David Vela-Vick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Vela-Vick', 18)}}的其他基金
Interactions Between Contact Geometry, Floer Theory and Low-Dimensional Topology
接触几何、弗洛尔理论和低维拓扑之间的相互作用
- 批准号:
1907654 - 财政年份:2019
- 资助金额:
$ 13.16万 - 项目类别:
Standard Grant
Contact geometry, Heegaard Floer homology and open book decompositions
接触几何、Heegaard Floer 同调和开卷分解
- 批准号:
1249708 - 财政年份:2012
- 资助金额:
$ 13.16万 - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Amplituhedra, Cluster Algebras and Positive Geometry
会议:幅面体、簇代数和正几何
- 批准号:
2412346 - 财政年份:2024
- 资助金额:
$ 13.16万 - 项目类别:
Standard Grant
RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
- 批准号:
2342225 - 财政年份:2024
- 资助金额:
$ 13.16万 - 项目类别:
Continuing Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
- 批准号:
2401164 - 财政年份:2024
- 资助金额:
$ 13.16万 - 项目类别:
Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 13.16万 - 项目类别:
Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 13.16万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
- 批准号:
2402099 - 财政年份:2024
- 资助金额:
$ 13.16万 - 项目类别:
Fellowship Award
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
- 批准号:
2333970 - 财政年份:2024
- 资助金额:
$ 13.16万 - 项目类别:
Standard Grant
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 13.16万 - 项目类别:
Continuing Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
$ 13.16万 - 项目类别:
Continuing Grant