OAC Core: Small: Devising Data-driven Methodologies by Employing Large-scale Empirical Data to Fingerprint, Attribute, Remediate and Analyze Internet-scale IoT Maliciousness

OAC 核心:小型:通过使用大规模经验数据来指纹识别、归因、修复和分析互联网规模的物联网恶意行为,设计数据驱动的方法

基本信息

  • 批准号:
    1907821
  • 负责人:
  • 金额:
    $ 49.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2019-10-31
  • 项目状态:
    已结题

项目摘要

At least 20 billion devices will be connected to the Internet by 2023. Many of these devices transmit critical and sensitive system and personal data in real-time. Collectively known as "the Internet of Things" (IoT), this market represents a $267 billion per year industry. As valuable as this market is, security spending on the sector barely breaks 1%. Indeed, while IoT vendors continue to push more IoT devices to market, the security of these devices has often fallen in priority, making them easier to exploit. This drastically threatens the privacy of the consumers and the safety of mission-critical systems. While a number of research endeavors are currently taking place to address the IoT security problem, several challenges hinder their success. These include the lack of IoT monitoring capabilities once such devices are deployed, the shortage of remediation techniques when they are compromised, and the inadequacy of methodologies to permit the comprehension of the underlying IoT malicious infrastructures. To this end, this project will serve NSF's mission to promote the progress of science by developing data science methodologies to identify and remediate infected IoT devices in near real-time. The project will also promote cyber security research and training for minorities and K-12 students. Moreover, the project will contribute to operational cyber security by developing a large-scale cyberinfrastructure for IoT-relevant data and threat sharing, enabling hands-on cyber-science at large. The project will scrutinize close to 100 GB/hr of real-time unsolicited Internet-scale traffic to devise and develop efficient deep learning classifiers to fingerprint IoT devices, identifying their types and vendors, and disclosing their large-scale vulnerabilities and hosting environments. The project will design and develop fast greedy approximation algorithms for L1-norm Principal Component Analysis (PCA) data-dimensionality reduction, enabling the real-time execution of the Density Based Spatial Clustering of Application with Noise (DBSCAN) technique for detecting and attributing IoT orchestrated botnets. The project will also design scalable offensive security algorithms based on Internet-wide active measurements to offer macroscopic remediation strategies. The project will curate close to 3.5 million malware samples/day and around 1.3 million passive DNS records/day to build graph-theoretic models to uncover and characterize inter-related components which form the concept of IoT malicious cyberinfrastructure. Further, the project will analyze the evolution of such infrastructures to comprehend their modus operandi by devising efficiency graph similarity techniques in linear time, by designing and implementing algorithms rooted in graph kernels and min-hashing methods. The project will also (i) develop a unique cyberinfrastructure for IoT empirical data and cyber threat indexing and sharing, (ii) automate the devised algorithms and techniques by leveraging high speed, in-memory data processing technologies, (iii) generate IoT-specific detection signatures by exploring fuzzy hashing algorithms, and (iv) enable at-large access to the generated IoT artifacts through a secure API and a front-end mechanism.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
到2023年,至少有200亿台设备将连接到互联网。许多这些设备实时传输关键和敏感的系统和个人数据。这个被统称为“物联网”(IoT)的市场代表着一个每年2670亿美元的行业。尽管这个市场很有价值,但该领域的安全支出仅略高于1%。事实上,虽然物联网供应商继续将更多的物联网设备推向市场,但这些设备的安全性往往处于优先地位,使其更容易被利用。这极大地威胁到消费者的隐私和关键任务系统的安全。虽然目前正在进行一些研究工作来解决物联网安全问题,但一些挑战阻碍了他们的成功。其中包括一旦部署此类设备就缺乏物联网监控能力,当它们受到损害时缺乏补救技术,以及无法理解底层物联网恶意基础设施的方法不足。为此,该项目将服务于NSF的使命,即通过开发数据科学方法来近乎实时地识别和修复受感染的物联网设备,从而促进科学进步。该项目还将促进针对少数族裔和K-12学生的网络安全研究和培训。此外,该项目将通过为物联网相关数据和威胁共享开发大规模网络基础设施,为运营网络安全做出贡献,从而实现大规模的动手网络科学。该项目将审查近100gb /小时的实时未经请求的互联网规模流量,以设计和开发高效的深度学习分类器来指纹物联网设备,识别其类型和供应商,并披露其大规模漏洞和托管环境。该项目将设计和开发用于l1范数主成分分析(PCA)数据降维的快速贪婪逼近算法,从而能够实时执行基于密度的噪声应用空间聚类(DBSCAN)技术,用于检测和归属物联网编排的僵尸网络。该项目还将设计基于互联网范围内主动测量的可扩展攻击性安全算法,以提供宏观补救策略。该项目将每天收集近350万个恶意软件样本和约130万个被动DNS记录,建立图论模型,以发现和表征构成物联网恶意网络基础设施概念的相互关联的组件。此外,该项目将分析这些基础设施的演变,通过设计线性时间内的效率图相似技术,通过设计和实现基于图核和最小哈希方法的算法,来理解它们的运作方式。该项目还将(i)为物联网经验数据和网络威胁索引和共享开发独特的网络基础设施,(ii)通过利用高速内存数据处理技术实现设计算法和技术的自动化,(iii)通过探索模糊散列算法生成物联网特定检测签名,以及(iv)通过安全API和前端机制实现对生成的物联网工件的大规模访问。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elias Bou-Harb其他文献

On DGA Detection and Classification Using P4 Programmable Switches
  • DOI:
    10.1016/j.cose.2024.104007
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ali AlSabeh;Kurt Friday;Elie Kfoury;Jorge Crichigno;Elias Bou-Harb
  • 通讯作者:
    Elias Bou-Harb
A deep learning-based adaptive cyber disaster management framework
  • DOI:
    10.1186/s40537-025-01241-3
  • 发表时间:
    2025-07-19
  • 期刊:
  • 影响因子:
    6.400
  • 作者:
    Nataliia Neshenko;Elias Bou-Harb;Borko Furht;Milad Baghersad
  • 通讯作者:
    Milad Baghersad
Unmasking stealthy attacks on nonlinear DAE models of power grids
揭示对电网非线性微分代数方程(DAE)模型的隐蔽攻击

Elias Bou-Harb的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elias Bou-Harb', 18)}}的其他基金

Collaborative Research: CyberTraining: Implementation: Medium: Cross-Disciplinary Training for Joint Cyber-Physical Systems and IoT Security
协作研究:网络培训:实施:中:联合网络物理系统和物联网安全的跨学科培训
  • 批准号:
    2230086
  • 财政年份:
    2023
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Continuing Grant
OAC Core: Data-driven Methods and Techniques For Protecting Research and Critical Cyberinfrastructure By Characterizing and Defending Against Ransomware
OAC 核心:通过表征和防御勒索软件来保护研究和关键网络基础设施的数据驱动方法和技术
  • 批准号:
    2348719
  • 财政年份:
    2023
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Cross-Disciplinary Training for Joint Cyber-Physical Systems and IoT Security
协作研究:网络培训:实施:中:联合网络物理系统和物联网安全的跨学科培训
  • 批准号:
    2404946
  • 财政年份:
    2023
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Continuing Grant
OAC Core: Data-driven Methods and Techniques For Protecting Research and Critical Cyberinfrastructure By Characterizing and Defending Against Ransomware
OAC 核心:通过表征和防御勒索软件来保护研究和关键网络基础设施的数据驱动方法和技术
  • 批准号:
    2104273
  • 财政年份:
    2021
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Standard Grant
CRII: OAC: Inferring, Attributing, Mitigating and Analyzing the Malicious Orchestration of Internet-scale Exploited IoT Devices: A Network Telescope Approach
CRII:OAC:推断、归因、减轻和分析互联网规模被利用物联网设备的恶意编排:网络望远镜方法
  • 批准号:
    1953050
  • 财政年份:
    2019
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Standard Grant
CRII: OAC: Inferring, Attributing, Mitigating and Analyzing the Malicious Orchestration of Internet-scale Exploited IoT Devices: A Network Telescope Approach
CRII:OAC:推断、归因、减轻和分析互联网规模被利用物联网设备的恶意编排:网络望远镜方法
  • 批准号:
    1755179
  • 财政年份:
    2018
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Standard Grant

相似国自然基金

胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
  • 批准号:
    82371765
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
  • 批准号:
    22303037
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
  • 批准号:
    92053110
  • 批准年份:
    2020
  • 资助金额:
    70.0 万元
  • 项目类别:
    重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
  • 批准号:
    81902805
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
  • 批准号:
    41973063
  • 批准年份:
    2019
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
  • 批准号:
    31900138
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
CORDEX-CORE区域气候模拟与预估研讨会
  • 批准号:
    41981240365
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
  • 批准号:
    2412329
  • 财政年份:
    2023
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Standard Grant
OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
  • 批准号:
    2333899
  • 财政年份:
    2023
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Standard Grant
OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
  • 批准号:
    2007775
  • 财政年份:
    2020
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS core: OAC core: Small: New Techniques for I/O Behavior Modeling and Persistent Storage Device Configuration
合作研究: CNS 核心:OAC 核心:小型:I/O 行为建模和持久存储设备配置新技术
  • 批准号:
    2008324
  • 财政年份:
    2020
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
  • 批准号:
    2007789
  • 财政年份:
    2020
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS core: OAC core: Small: New Techniques for I/O Behavior Modeling and Persistent Storage Device Configuration
合作研究: CNS 核心:OAC 核心:小型:I/O 行为建模和持久存储设备配置新技术
  • 批准号:
    2008072
  • 财政年份:
    2020
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Small: Efficient and Policy-driven Burst Buffer Sharing
合作研究:OAC Core:小型:高效且策略驱动的突发缓冲区共享
  • 批准号:
    2008388
  • 财政年份:
    2020
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Standard Grant
OAC Core: Small: Collaborative Research: Conversational Agents for Supporting Sustainable Implementation and Systemic Diffusion of Cyberinfrastructure and Science Gateways
OAC 核心:小型:协作研究:支持网络基础设施和科学网关可持续实施和系统扩散的对话代理
  • 批准号:
    2007100
  • 财政年份:
    2020
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Standard Grant
OAC Core: SMALL: DeepJIMU: Model-Parallelism Infrastructure for Large-scale Deep Learning by Gradient-Free Optimization
OAC 核心:小型:DeepJIMU:通过无梯度优化实现大规模深度学习的模型并行基础设施
  • 批准号:
    2007976
  • 财政年份:
    2020
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Standard Grant
OAC Core: Small: Collaborative Research: Conversational Agents for Supporting Sustainable Implementation and Systemic Diffusion of Cyberinfrastructure and Science Gateways
OAC 核心:小型:协作研究:支持网络基础设施和科学网关可持续实施和系统扩散的对话代理
  • 批准号:
    2006816
  • 财政年份:
    2020
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了