OAC Core: Small: Higher Order Solvers for Training Machine Learning Models

OAC 核心:小型:用于训练机器学习模型的高阶求解器

基本信息

  • 批准号:
    1908691
  • 负责人:
  • 金额:
    $ 49.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Machine learning (ML) techniques have emerged as a key enabling technology for a broad class of applications, from business enterprises to engineering design. These techniques rely on complex models that must be suitably trained on large amounts of data. This training process takes the form of mathematical optimization, which minimizes the error between model output and known output, for training data. Owing to the large number of degrees of freedom in the model, the complexity of the objective function being minimized, and the volume of training data, the process of effectively and efficiently training ML models is a critical step in machine learning. The goal of this project is to develop novel optimization techniques, their implementations on large scale parallel platforms with GPU accelerators, validation in the context of diverse ML applications, and development of highly optimized, robust, and usable software tools and libraries. These software tools will be specialized to various ML models, and incorporated into commonly used software frameworks such as TensorFlow -- thus making them seamlessly accessible to a very large and diverse user community. The robustness, performance, and scalability of the software provide unique capabilities, with the potential to redefine the state of the art in ML applications, in terms of supporting significantly more complex ML models, enhancing generalizability from training to test data, and significantly reducing training time. Building on these intellectual and broader impact goals, the project integrates a number of activities aimed at broadening participation and creating educational opportunities and content. These include summer schools for undergraduate students to channel them into research careers, providing research opportunities for undergraduates through the school year, development of new educational material that integrates learning with hands-on use of software, and motivating novel formulations and methods in machine learning.The technical goals of the project are accomplished through a combination of novel numerical methods, statistical sampling techniques, highly scalable parallel implementations, and efficient use of GPUs. The project has the following specific aims: (i) development of second order Newton-type methods for non-convex problems. Specifically, the project focuses on Trust Region (TR) and Cubic Regularization (CR) based methods that rely on approximations to the Hessian and Fisher information matrices to deliver highly efficient solvers; (ii) development of a complete Higher Order Optimization Procedures (HOOP) toolkit, including unbiased and biased sampled Hessians, block diagonal approximations of the Fisher matrix, efficient and effective preconditioners for the Conjugate Gradient (CG) and CG-Steihaug solvers, and problem-specific optimizations; (iii) development of efficient parallel methods based on a combination of Alternating Direction Method of Multipliers (ADMM) and parallel matrix solvers, for scalable hardware platforms with GPU accelerators, as well as an integration of the software into TensorFlow. The software will also be made available as containerized executables that can be instantiated at clients with minimal effort, as libraries that can be used to build new ML applications, and as web accessible services for education and training; and (iv) demonstration of the effectiveness of the new methods on important application classes, including solution of large-scale semi-definite programs (SDP), problems in matrix factorization and distance metric learning, and training of deep neural networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习(ML)技术已经成为从商业企业到工程设计等广泛应用的关键技术。这些技术依赖于复杂的模型,这些模型必须在大量数据上进行适当的训练。该训练过程采用数学优化的形式,其针对训练数据最小化模型输出和已知输出之间的误差。由于模型中的自由度很大,目标函数的复杂性被最小化,以及训练数据的量,有效和高效地训练ML模型的过程是机器学习中的关键步骤。 该项目的目标是开发新的优化技术,在具有GPU加速器的大规模并行平台上实现,在各种ML应用程序的背景下进行验证,以及开发高度优化,强大和可用的软件工具和库。这些软件工具将专门用于各种ML模型,并集成到常用的软件框架中,例如TensorFlow,从而使它们能够无缝地访问非常庞大且多样化的用户社区。 该软件的鲁棒性、性能和可扩展性提供了独特的功能,有可能重新定义ML应用程序的最新技术,支持更复杂的ML模型,增强从训练到测试数据的可推广性,并显着减少训练时间。在这些知识和更广泛影响目标的基础上,该项目整合了一些旨在扩大参与和创造教育机会和内容的活动。 这些措施包括暑期学校为本科生引导他们进入研究生涯,通过学年为本科生提供研究机会,开发新的教育材料,将学习与实际使用软件相结合,并激励机器学习中的新公式和方法。该项目的技术目标通过结合新颖的数值方法,统计抽样技术,高度可扩展的并行实现,以及GPU的高效使用。该项目有以下具体目标:(一)发展非凸问题的二阶牛顿型方法。具体而言,该项目侧重于信赖域(TR)和三次正则化(CR)的方法,依赖于近似的海森和费舍尔信息矩阵,以提供高效的求解器;(ii)开发完整的高阶优化程序(HOOP)工具包,包括无偏和有偏采样Hessians、Fisher矩阵的块对角逼近,用于共轭梯度(CG)和CG-Steihaug求解器的高效和有效的预处理器,以及特定问题的优化;(iii)发展以交替方向乘法(ADMM)和并行矩阵求解器相结合为基础的有效并行方法,用于具有GPU加速器的可扩展硬件平台,以及将软件集成到TensorFlow中。该软件还将作为容器化的可执行文件提供,可以在客户端以最小的努力进行实例化,作为可用于构建新ML应用程序的库,以及作为教育和培训的Web访问服务;以及(iv)新方法在重要应用类别上的有效性的示范,包括大规模半定规划(SDP)的解,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ananth Grama其他文献

The ReaxFF reactive force-field: development, applications and future directions
ReaxFF 反应力场:发展、应用和未来方向
  • DOI:
    10.1038/npjcompumats.2015.11
  • 发表时间:
    2016-03-04
  • 期刊:
  • 影响因子:
    11.900
  • 作者:
    Thomas P Senftle;Sungwook Hong;Md Mahbubul Islam;Sudhir B Kylasa;Yuanxia Zheng;Yun Kyung Shin;Chad Junkermeier;Roman Engel-Herbert;Michael J Janik;Hasan Metin Aktulga;Toon Verstraelen;Ananth Grama;Adri C T van Duin
  • 通讯作者:
    Adri C T van Duin
Erratum to: ‘MicroRNA target prediction using thermodynamic and sequence curves’
  • DOI:
    10.1186/s12864-016-2367-1
  • 发表时间:
    2016-03-09
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Asish Ghoshal;Raghavendran Shankar;Saurabh Bagchi;Ananth Grama;Somali Chaterji
  • 通讯作者:
    Somali Chaterji

Ananth Grama的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ananth Grama', 18)}}的其他基金

2019 Aspiring Computer Systems Research (CSR) Principal Investigators (PIs) Workshop
2019 年有抱负的计算机系统研究 (CSR) 首席研究员 (PI) 研讨会
  • 批准号:
    1931284
  • 财政年份:
    2019
  • 资助金额:
    $ 49.57万
  • 项目类别:
    Standard Grant
XPS: EXPL: SDA: Scalable Concurrency Control Techniques for Distributed Systems
XPS:EXPL:SDA:分布式系统的可扩展并发控制技术
  • 批准号:
    1533795
  • 财政年份:
    2015
  • 资助金额:
    $ 49.57万
  • 项目类别:
    Standard Grant
CSR: Small: Software Infrastructure for Online Analytics
CSR:小型:在线分析软件基础设施
  • 批准号:
    1422338
  • 财政年份:
    2014
  • 资助金额:
    $ 49.57万
  • 项目类别:
    Standard Grant
Collaborative Research: CDI-Type II: Probing Complex Dynamics of Small Interfering RNA (siRNA) Transfection by Petascale Simulations and Network Analysis
合作研究:CDI-Type II:通过 Petascale 模拟和网络分析探索小干扰 RNA (siRNA) 转染的复杂动力学
  • 批准号:
    1124962
  • 财政年份:
    2011
  • 资助金额:
    $ 49.57万
  • 项目类别:
    Standard Grant
CDI-Type II: Hierarchiacal Modularity in Evolution and Function
CDI-Type II:进化和功能的层次模块化
  • 批准号:
    0835677
  • 财政年份:
    2008
  • 资助金额:
    $ 49.57万
  • 项目类别:
    Standard Grant
Collaborative Research: EMT/BSSE:Petascale Simulations of DNA Dynamics and Self-Assembly
合作研究:EMT/BSSE:DNA 动力学和自组装的千万亿次模拟
  • 批准号:
    0829844
  • 财政年份:
    2008
  • 资助金额:
    $ 49.57万
  • 项目类别:
    Standard Grant
ITR-ASE-Sim: Collaborative Research: De Novo Hierarchical Simulations of Stress Corrosion Cracking in Materials
ITR-ASE-Sim:协作研究:材料应力腐蚀裂纹的从头分层模拟
  • 批准号:
    0427540
  • 财政年份:
    2004
  • 资助金额:
    $ 49.57万
  • 项目类别:
    Standard Grant
CAREER: Fast Methods for Particle Dynamics and Their Applications
职业:粒子动力学的快速方法及其应用
  • 批准号:
    9875899
  • 财政年份:
    1999
  • 资助金额:
    $ 49.57万
  • 项目类别:
    Continuing Grant
Experimental Software Systems: ISAC: Integrated System Support for Adaptive Communication and Computation Control in Clustered Environments
实验软件系统:ISAC:集群环境中自适应通信和计算控制的集成系统支持
  • 批准号:
    9806741
  • 财政年份:
    1998
  • 资助金额:
    $ 49.57万
  • 项目类别:
    Continuing Grant
Analytical and Computational Framework for n-Body Simulations
n 体模拟的分析和计算框架
  • 批准号:
    9872101
  • 财政年份:
    1998
  • 资助金额:
    $ 49.57万
  • 项目类别:
    Continuing Grant

相似国自然基金

胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
  • 批准号:
    82371765
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
  • 批准号:
    22303037
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
  • 批准号:
    92053110
  • 批准年份:
    2020
  • 资助金额:
    70.0 万元
  • 项目类别:
    重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
  • 批准号:
    81902805
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
  • 批准号:
    41973063
  • 批准年份:
    2019
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
CORDEX-CORE区域气候模拟与预估研讨会
  • 批准号:
    41981240365
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
  • 批准号:
    31900138
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
  • 批准号:
    2412329
  • 财政年份:
    2023
  • 资助金额:
    $ 49.57万
  • 项目类别:
    Standard Grant
OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
  • 批准号:
    2333899
  • 财政年份:
    2023
  • 资助金额:
    $ 49.57万
  • 项目类别:
    Standard Grant
OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
  • 批准号:
    2007775
  • 财政年份:
    2020
  • 资助金额:
    $ 49.57万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS core: OAC core: Small: New Techniques for I/O Behavior Modeling and Persistent Storage Device Configuration
合作研究: CNS 核心:OAC 核心:小型:I/O 行为建模和持久存储设备配置新技术
  • 批准号:
    2008324
  • 财政年份:
    2020
  • 资助金额:
    $ 49.57万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
  • 批准号:
    2007789
  • 财政年份:
    2020
  • 资助金额:
    $ 49.57万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS core: OAC core: Small: New Techniques for I/O Behavior Modeling and Persistent Storage Device Configuration
合作研究: CNS 核心:OAC 核心:小型:I/O 行为建模和持久存储设备配置新技术
  • 批准号:
    2008072
  • 财政年份:
    2020
  • 资助金额:
    $ 49.57万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Small: Efficient and Policy-driven Burst Buffer Sharing
合作研究:OAC Core:小型:高效且策略驱动的突发缓冲区共享
  • 批准号:
    2008388
  • 财政年份:
    2020
  • 资助金额:
    $ 49.57万
  • 项目类别:
    Standard Grant
OAC Core: Small: Collaborative Research: Conversational Agents for Supporting Sustainable Implementation and Systemic Diffusion of Cyberinfrastructure and Science Gateways
OAC 核心:小型:协作研究:支持网络基础设施和科学网关可持续实施和系统扩散的对话代理
  • 批准号:
    2007100
  • 财政年份:
    2020
  • 资助金额:
    $ 49.57万
  • 项目类别:
    Standard Grant
OAC Core: SMALL: DeepJIMU: Model-Parallelism Infrastructure for Large-scale Deep Learning by Gradient-Free Optimization
OAC 核心:小型:DeepJIMU:通过无梯度优化实现大规模深度学习的模型并行基础设施
  • 批准号:
    2007976
  • 财政年份:
    2020
  • 资助金额:
    $ 49.57万
  • 项目类别:
    Standard Grant
OAC Core: Small: Collaborative Research: Conversational Agents for Supporting Sustainable Implementation and Systemic Diffusion of Cyberinfrastructure and Science Gateways
OAC 核心:小型:协作研究:支持网络基础设施和科学网关可持续实施和系统扩散的对话代理
  • 批准号:
    2006816
  • 财政年份:
    2020
  • 资助金额:
    $ 49.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了