SHF: Small: Detecting the 1%: Growing the Science of Vulnerability Detection

SHF:%20小型:%20检测%20the%201%:%20增长%20the%20科学%20of%20漏洞%20检测

基本信息

  • 批准号:
    1909516
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Daily, news reports reveal the latest increasingly sophisticated security attacks that threaten our national security, our cyber infrastructure, our health, our finances, our children, and democracy itself. Yet, studies indicate that discovered vulnerabilities can be very damaging but are rare, appearing in about 1-4% of software files. Finding vulnerabilities has been described as "searching for a needing in a haystack." But, protecting the American people, the American homeland, and the American way of life means that software organizations need to detect vulnerabilities so that they can be fixed before the product is used by customers, which makes the vulnerabilities available to attackers. This project will perform studies to understand the characteristics and location of the most risky vulnerabilities so that special effort can be spent and automated tools can be developed to detect the vulnerabilities. The work will improve the ability of software organizations to produce secure software products so that people can rely upon computer systems to perform critical functions and to process, store, and communicate sensitive information securely. The research project also involves the mentoring of PhD students and innovation in software-security teaching for undergraduate and graduate students.Making informed decisions on what code to review and test can improve a team's ability to find and remove more vulnerabilities. Therefore, security engineers looking to prioritize security inspection and testing efforts may be better served by vulnerability-based detection techniques and tools and effective vulnerability prediction. The goal of this project is to aid software practitioners in detecting exploitable vulnerabilities through empirical study of the characteristics of vulnerabilities and through the development and evaluation of prediction models enhanced with recent research from artificial intelligence. The project will explore characteristics of vulnerabilities with a focus on those that pose the highest security risk. Knowledge about the fundamental characteristics of vulnerabilities can be used in the development of vulnerability-focused tools to aid teams in effectively and efficiently detecting vulnerabilities. The fundamental vulnerability characteristics can also be used to develop novel metrics and methods for building vulnerability prediction models enhanced with recent research from artificial intelligence. The project team will also provide a testbed and test data to help other security researchers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
News报告每日报告揭示了最新越来越复杂的安全攻击,这威胁了我们的国家安全,我们的网络基础设施,我们的健康,我们的财务,我们的孩子和民主本身。 但是,研究表明,发现的漏洞可能非常有害,但很少见,大约出现在1-4%的软件文件中。发现漏洞已被描述为“在干草堆中寻找需求”。但是,保护美国人民,美国的家园和美国的生活方式意味着软件组织需要检测漏洞,以便在客户使用产品之前可以修复它们,这使攻击者可用。该项目将进行研究,以了解最风险的漏洞的特征和位置,以便可以花费特殊的努力并开发自动化工具来检测漏洞。这项工作将提高软件组织生产安全的软件产品的能力,以便人们可以依靠计算机系统执行关键功能,并可以安全地处理,存储和通信敏感信息。 该研究项目还涉及博士生和研究生软件安全教学中的创新。制定有关审查和测试的代码的知情决定可以提高团队找到和消除更多漏洞的能力。因此,基于漏洞的检测技术和工具以及有效的脆弱性预测,希望更好地为安全检查和测试工作的安全工程师更好地服务。 该项目的目的是通过对脆弱性特征的经验研究以及通过人工智能的最新研究增强了预测模型的开发和评估来帮助软件实践者通过实证研究来检测可剥削的脆弱性。 该项目将探索漏洞的特征,重点是构成最高安全风险的漏洞。有关脆弱性的基本特征的知识可以用于开发以脆弱性为中心的工具,以有效有效地检测脆弱性。通过人工智能的最新研究,可以使用基本脆弱性特征来开发建立脆弱性预测模型的新型指标和方法。 该项目团队还将提供测试和测试数据以帮助其他安全研究人员。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响评估标准来评估值得支持的。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dazzle: Using Optimized Generative Adversarial Networks to Address Security Data Class Imbalance Issue
How to Better Distinguish Security Bug Reports (Using Dual Hyperparameter Optimization)
  • DOI:
    10.1007/s10664-020-09906-8
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Rui Shu;Tianpei Xia;Jianfeng Chen;L. Williams;T. Menzies
  • 通讯作者:
    Rui Shu;Tianpei Xia;Jianfeng Chen;L. Williams;T. Menzies
Improving Vulnerability Inspection Efficiency Using Active Learning
利用主动学习提高漏洞检查效率
  • DOI:
    10.1109/tse.2019.2949275
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Yu, Zhe;Theisen, Christopher;Williams, Laurie;Menzies, Tim
  • 通讯作者:
    Menzies, Tim
Omni: automated ensemble with unexpected models against adversarial evasion attack
  • DOI:
    10.1007/s10664-021-10064-8
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Rui Shu;Tianpei Xia;L. Williams;T. Menzies
  • 通讯作者:
    Rui Shu;Tianpei Xia;L. Williams;T. Menzies
Structuring a Comprehensive Software Security Course Around the OWASP Application Security Verification Standard
围绕 OWASP 应用程序安全验证标准构建全面的软件安全课程
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laurie Williams其他文献

Allergen Removal and Transfer with Wiping and Cleaning Methods Used in Retail and Food Service Establishments
  • DOI:
    10.4315/jfp-20-025
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Binaifer Bedford;Girvin Liggans;Laurie Williams;Lauren Jackson
  • 通讯作者:
    Lauren Jackson
MalwareBench: Malware samples are not enough
MalwareBench:恶意软件样本还不够
Attackers reveal their arsenal: An investigation of adversarial techniques in CTI reports
攻击者暴露他们的武器库:CTI 报告中对抗技术的调查
  • DOI:
    10.48550/arxiv.2401.01865
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Md. Rayhanur Rahman;S. Basak;Rezvan Mahdavi;Laurie Williams
  • 通讯作者:
    Laurie Williams
Regression Test Selection for Black-box Dynamic Link Library Components
黑盒动态链接库组件的回归测试选择
“I Am a Nice Person When I Do Yoga!!!”
“当我做瑜伽时,我是一个好人!!!”
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2
  • 作者:
    A. Ross;M. Bevans;E. Friedmann;Laurie Williams;Sue A. Thomas
  • 通讯作者:
    Sue A. Thomas

Laurie Williams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Laurie Williams', 18)}}的其他基金

Collaborative Proposal: SaTC: Frontiers: Enabling a Secure and Trustworthy Software Supply Chain
协作提案:SaTC:前沿:实现安全可信的软件供应链
  • 批准号:
    2207008
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: Risk-based Secure Checked-in Credential Reduction for Software Development
SaTC:核心:小型:软件开发中基于风险的安全签入凭证减少
  • 批准号:
    2055554
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: DarkSide-20k: A Global Program for the Direct Detection of Dark Matter Using Low-Radioactivity Argon
合作研究:DarkSide-20k:使用低放射性氩直接探测暗物质的全球计划
  • 批准号:
    1812480
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
EAGER: Cognitive modeling of strategies for dealing with errors in mobile touch interfaces
EAGER:处理移动触摸界面错误策略的认知建模
  • 批准号:
    1451172
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EDU: Motivating and Reaching University Students and Professionals with Software Security Education
EDU:通过软件安全教育激励和影响大学生和专业人士
  • 批准号:
    1318428
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Differential Analysis on Changes in Medical Device Software
医疗器械软件变化差异分析
  • 批准号:
    1160603
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CT-ER: On the Use of Security Metrics to Identify and Rank the Risk of Vulnerability- and Exploit-Prone Components
CT-ER:关于使用安全指标来识别和排名易受攻击组件的风险
  • 批准号:
    0716176
  • 财政年份:
    2007
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Academy for Software Engineering Educators and Trainers
软件工程教育者和培训师学院
  • 批准号:
    0542681
  • 财政年份:
    2005
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Test-Driven Development of Secure and Reliable Software Applications
职业:安全可靠的软件应用程序的测试驱动开发
  • 批准号:
    0346903
  • 财政年份:
    2004
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
ITWF: Collaboration through Agile Software Development Practices: A Means for Improvement in Quality and Retention of IT Workers
ITWF:通过敏捷软件开发实践进行协作:提高 IT 员工质量和留住员工的方法
  • 批准号:
    0305917
  • 财政年份:
    2003
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于新型定量模型的荧光纳米探针用于复杂体系小分子检测及成像研究
  • 批准号:
    22367004
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
复杂场景下模型—数据联合驱动的红外小目标检测研究
  • 批准号:
    62303165
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
广域密集小无人机的雷达多维联合快速检测与精细分离技术研究
  • 批准号:
    62201099
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向复杂气候的可解释遥感图像多粒度小目标检测研究
  • 批准号:
    62276037
  • 批准年份:
    2022
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
面向复杂气候的可解释遥感图像多粒度小目标检测研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

SHF: Small: Detecting and Repairing Accessibility Failures in Web Applications
SHF:小:检测和修复 Web 应用程序中的辅助功能故障
  • 批准号:
    2009045
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF:Small: Build Code Maintenance and Detecting, Testing, Locating Configuration and Build Errors
SHF:Small:构建代码维护以及检测、测试、定位配置和构建错误
  • 批准号:
    1723432
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: RUI: Characterizing, Detecting, and Fixing Performance Bugs That Have Non-Intrusive Fixes
SHF:小:RUI:表征、检测和修复具有非侵入式修复的性能错误
  • 批准号:
    1644285
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: RUI: Characterizing, Detecting, and Fixing Performance Bugs That Have Non-Intrusive Fixes
SHF:小:RUI:表征、检测和修复具有非侵入式修复的性能错误
  • 批准号:
    1528134
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Detecting and Repairing Presentation Failures in Web Applications
SHF:小型:检测和修复 Web 应用程序中的演示失败
  • 批准号:
    1528163
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了