III: Small: Collaborative Research: Scalable Deep Bayesian Tensor Decomposition
III:小:协作研究:可扩展的深贝叶斯张量分解
基本信息
- 批准号:1909912
- 负责人:
- 金额:$ 19.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many applications in the real world, such as online shopping, recommendation, social media and information security, involve interactions among different entities. For example, online shopping behaviors can be simply described by the interactions between customers, commodities and shopping web sites. These interactions are naturally represented by tensors, which are arrays of multiple dimensions. Each dimension represents a type of entities (e.g., customers or commodities), and each element describes a particular interaction (e.g, purchased/not purchased). The project aims to develop flexible and efficient tensor decomposition approaches that can discover a variety of complicated relationships between the entities in tensors, handle a tremendous amount of data from practical applications, and adapt to rapid data growth. The developed approaches can be used to promote many important prediction and knowledge discovery tasks, such as improving the recommendation accuracy, predicting advertisement click rates, understanding how misinformation propagation through social media, and detecting malicious cell- phone apps. Despite the success of the existing tensor decomposition approaches, they use multilinear decomposition forms or shallow kernels, and are incapable of capturing highly complicated relationships in data. However, complex and nonlinear relationships, effects and patterns are ubiquitous, due to the diversity and complexity of the practical applications. Furthermore, there is a lack of efficient, scalable nonlinear decomposition algorithms to handle static tensors nowadays at unprecedented scales, and dynamic tensors that grow fast and continuously. The project aims to develop scalable deep Bayesian tensor decomposition approaches that maximize the flexibility to capture all kinds of complex relationships, efficiently process static data at unprecedented scales and rapid data streams, and provide uncertainty quantification for both embedding estimations and predictions. The research will be accomplished through: (1) the design of new Bayesian tensor decomposition models that incorporate deep architectures to improve the capability of estimating intricate functions, (2) the development of decentralized, asynchronous learning algorithms to process extremely large-scale static tensors, (3) the development of online incremental learning algorithms to handle rapid data streams and to produce responsive updates upon receiving new data, without retraining from scratch, and (4) comprehensive evaluations on both synthetic and real-world big data. The proposed research will contribute a markedly improved tensor decomposition toolset that are powerful to estimate arbitrarily complex relationships, scalable to static tensors at unprecedented scales (e.g., billions of nodes and trillions of entries) and to fast data streams with efficient incremental updates. Moreover, as Bayesian approaches, the toolset are resilient to noise, provide posterior distributions for uncertainty quantification, and integrate all possible outcomes into robust predictions. Once the toolsets are available, the understanding of the high-order relationships in tensors, and the mining of associated patterns, such as communities and anomalies, will be enormously enhanced; the predictive performance for the quantify of interests, such as social links, click-through-rates, and recommendation, will be dramatically promoted.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现实世界中的许多应用,如网上购物、推荐、社交媒体和信息安全,都涉及不同实体之间的交互。例如,网上购物行为可以简单地用顾客、商品和购物网站之间的互动来描述。这些相互作用自然由张量表示,张量是多维的数组。每个维度代表一种实体类型(例如,客户或商品),并且每个元素描述特定的交互(例如,已购买/未购买)。该项目旨在开发灵活高效的张量分解方法,能够发现张量中实体之间的各种复杂关系,处理来自实际应用的海量数据,并适应快速的数据增长。所开发的方法可用于促进许多重要的预测和知识发现任务,如提高推荐准确性,预测广告点击率,了解错误信息如何通过社交媒体传播,以及检测恶意手机应用程序。尽管现有的张量分解方法取得了成功,但它们使用的是多线性分解形式或浅核函数,并且无法捕获数据中高度复杂的关系。然而,由于实际应用的多样性和复杂性,复杂的、非线性的关系、效应和模式无处不在。此外,目前还缺乏有效的、可伸缩的非线性分解算法来处理规模空前的静态张量和快速、连续增长的动态张量。该项目旨在开发可扩展的深度贝叶斯张量分解方法,最大限度地提高灵活性以捕获各种复杂关系,以前所未有的规模和快速数据流高效处理静态数据,并为嵌入估计和预测提供不确定性量化。这项研究将通过以下方式完成:(1)设计新的贝叶斯张量分解模型,包括深层架构,以提高估计复杂函数的能力;(2)开发分散的、异步的学习算法,以处理极大规模的静态张量;(3)开发在线增量学习算法,以处理快速数据流并在接收到新数据时产生响应更新,而无需从头开始重新训练;以及(4)对合成和真实世界的大数据进行综合评估。拟议的研究将提供一个显著改进的张量分解工具集,该工具集能够强大地估计任意复杂的关系,可扩展到前所未有的规模的静态张量(例如,数十亿个节点和数万亿个条目),并通过高效的增量更新来加快数据流的速度。此外,随着贝叶斯方法的临近,该工具集对噪声具有弹性,为不确定性量化提供后验分布,并将所有可能的结果集成到稳健的预测中。一旦工具集可用,对张量中高阶关系的理解以及相关模式的挖掘,如社区和异常,将得到极大的增强;兴趣量化的预测性能,如社交链接、点击率和推荐,将得到极大的提升。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
StyleT2I: Toward Compositional and High-Fidelity Text-to-Image Synthesis
- DOI:10.1109/cvpr52688.2022.01766
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Zhiheng Li;Martin Renqiang Min;K. Li;Chenliang Xu
- 通讯作者:Zhiheng Li;Martin Renqiang Min;K. Li;Chenliang Xu
Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video Super-Resolution
- DOI:10.1109/cvpr42600.2020.00343
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Xiaoyu Xiang;Yapeng Tian;Yulun Zhang;Y. Fu;J. Allebach;Chenliang Xu
- 通讯作者:Xiaoyu Xiang;Yapeng Tian;Yulun Zhang;Y. Fu;J. Allebach;Chenliang Xu
Discover the Unknown Biased Attribute of an Image Classifier
- DOI:10.1109/iccv48922.2021.01470
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Zhiheng Li;Chenliang Xu
- 通讯作者:Zhiheng Li;Chenliang Xu
Unified Multisensory Perception: Weakly-Supervised Audio-Visual Video Parsing
- DOI:10.1007/978-3-030-58580-8_26
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Yapeng Tian;Dingzeyu Li;Chenliang Xu
- 通讯作者:Yapeng Tian;Dingzeyu Li;Chenliang Xu
A Whac-A-Mole Dilemma: Shortcuts Come in Multiples Where Mitigating One Amplifies Others
- DOI:10.1109/cvpr52729.2023.01922
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Zhiheng Li;I. Evtimov;Albert Gordo;C. Hazirbas;Tal Hassner;Cristian Cantón Ferrer;Chenliang Xu;Mark Ibrahim
- 通讯作者:Zhiheng Li;I. Evtimov;Albert Gordo;C. Hazirbas;Tal Hassner;Cristian Cantón Ferrer;Chenliang Xu;Mark Ibrahim
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chenliang Xu其他文献
Scale-Adaptive Video Understanding
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Chenliang Xu - 通讯作者:
Chenliang Xu
Audio-Visual Action Prediction with Soft-Boundary in Egocentric Videos
自我中心视频中具有软边界的视听动作预测
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Luchuan Song;Jing Bi;Chao Huang;Chenliang Xu - 通讯作者:
Chenliang Xu
Audio-Visual Object Localization in Egocentric Videos
以自我为中心的视频中的视听对象定位
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Chao Huang;Yapeng Tian;Anurag Kumar;Chenliang Xu - 通讯作者:
Chenliang Xu
A Study of Actor and Action Semantic retention in Video Supervoxel Segmentation
视频超体素分割中演员和动作语义保留的研究
- DOI:
10.1142/s1793351x13400114 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Chenliang Xu;Richard F. Doell;S. Hanson;C. Hanson;Jason J. Corso - 通讯作者:
Jason J. Corso
Chenliang Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chenliang Xu', 18)}}的其他基金
RI: Small: Learning Dynamics and Evolution towards Cognitive Understanding of Videos
RI:小:视频认知理解的学习动态和演化
- 批准号:
1813709 - 财政年份:2018
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
BIGDATA: F: Audio-Visual Scene Understanding
BIGDATA:F:视听场景理解
- 批准号:
1741472 - 财政年份:2017
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336769 - 财政年份:2024
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336768 - 财政年份:2024
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
III: Small: Multiple Device Collaborative Learning in Real Heterogeneous and Dynamic Environments
III:小:真实异构动态环境中的多设备协作学习
- 批准号:
2311990 - 财政年份:2023
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
- 批准号:
2324770 - 财政年份:2023
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems
合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络
- 批准号:
2316306 - 财政年份:2023
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311596 - 财政年份:2023
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311598 - 财政年份:2023
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
- 批准号:
2324769 - 财政年份:2023
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant