AF: Small: Collaborative Research: Rigorous Approaches for Scalable Privacy-preserving Deep Learning
AF:小型:协作研究:可扩展的隐私保护深度学习的严格方法
基本信息
- 批准号:1910100
- 负责人:
- 金额:$ 20.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the most salient features of this time is the dissemination of massive amounts of personal and sensitive data. Despite their enormous societal benefits, the powerful tools of modern machine learning, especially deep learning, can pose real threats to personal privacy. For example, over the last few years, it has become evident that deep neural networks have a remarkable power in learning even the finest details from large complex data sets. With such powerful tools, the need for robust and rigorous guarantees for privacy protection has become more crucial. The last decade has witnessed the rise of a sound mathematical theory, known as differential privacy, that enables designing data-analysis algorithms with rigorous privacy guarantees for their input data sets. Despite the noticeable success of this theory, existing tools from differential privacy are severely limited in offering acceptable utility guarantees when dealing with complex models like those arising in deep learning. This project will address those limitations by offering new principled approaches for designing differentially-private deep-learning algorithms that can scale to industrial workloads. The project will also involve collaboration with industry, which will facilitate the evaluation of the developed algorithms on real-world datasets and the development of open-source software tools. The products of this project have the potential to transform the way massive sets of sensitive data are used in modern machine-learning systems, which will impact the way these systems are designed and implemented in practice. The activities of this project will also aim at promoting diversity in computing by recruiting women and members of underrepresented groups.The investigators will develop a rigorous, multi-faceted design paradigm for scalable, practical, differentially private algorithms for modern machine learning. This paradigm is based on two general strategies: (i) exploiting realistic and useful properties of the data and the machine-learning models to circumvent existing limitations in the literature on differential privacy, and (ii) leveraging a limited amount of public data (that has no privacy constraints) to boost the utility of the algorithms. Based on these strategies, the project will pursue following directions: (1) developing a new, generic framework for utilizing public data in privacy-preserving machine learning, (2) designing improved iterative training algorithms that can bypass the standard use of the so-called "composition theorem" of differential privacy, and (3) designing new differentially private stochastic-gradient methods tuned specifically to non-convex and over-parameterized machine-learning problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这一时期最显著的特征之一是大量个人和敏感数据的传播。尽管它们具有巨大的社会效益,但现代机器学习的强大工具,特别是深度学习,可能对个人隐私构成真实的威胁。例如,在过去的几年里,很明显,深度神经网络在从大型复杂数据集中学习最细微的细节方面具有非凡的能力。有了如此强大的工具,对隐私保护的强大而严格的保证变得更加重要。在过去的十年里,一种被称为差分隐私的可靠数学理论兴起,该理论使设计数据分析算法能够为其输入数据集提供严格的隐私保证。尽管这一理论取得了显著的成功,但现有的差分隐私工具在处理深度学习等复杂模型时,在提供可接受的效用保证方面受到严重限制。该项目将通过提供新的原则性方法来解决这些限制,以设计可扩展到工业工作负载的差异化私有深度学习算法。该项目还将涉及与工业界的合作,这将有助于对已开发的关于真实世界数据集的算法进行评价,并有助于开发开放源码软件工具。该项目的产品有可能改变大量敏感数据在现代机器学习系统中的使用方式,这将影响这些系统在实践中的设计和实现方式。该项目的活动还旨在通过招募女性和代表性不足的群体成员来促进计算的多样性。研究人员将为现代机器学习开发一个严格的、多方面的设计范式,用于可扩展的、实用的、差异化的私有算法。这种范式基于两种一般策略:(i)利用数据和机器学习模型的现实和有用属性来规避现有文献中关于差异隐私的限制,以及(ii)利用有限数量的公共数据(没有隐私约束)来提高算法的实用性。根据这些战略,该项目将朝着以下方向努力:(1)开发一种新的通用框架,用于在隐私保护机器学习中利用公共数据,(2)设计改进的迭代训练算法,可以绕过差分隐私的所谓“合成定理”的标准使用,和(3)设计新的差分私有随机梯度方法,专门针对非凸和过参数化机器-该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CoPur: Certifiably Robust Collaborative Inference via Feature Purification
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:J. Liu
- 通讯作者:J. Liu
SecretGen: Privacy Recovery on Pre-Trained Models via Distribution Discrimination
- DOI:10.48550/arxiv.2207.12263
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Zhu-rong Yuan;Fan Wu;Yunhui Long;Chaowei Xiao;Bo Li
- 通讯作者:Zhu-rong Yuan;Fan Wu;Yunhui Long;Chaowei Xiao;Bo Li
The Secret Revealer: Generative Model-Inversion Attacks Against Deep Neural Networks
- DOI:10.1109/cvpr42600.2020.00033
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Yuheng Zhang;R. Jia;Hengzhi Pei;Wenxiao Wang;Bo Li;D. Song
- 通讯作者:Yuheng Zhang;R. Jia;Hengzhi Pei;Wenxiao Wang;Bo Li;D. Song
Improving Robustness of Deep-Learning-Based Image Reconstruction
- DOI:
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Ankit Raj;Y. Bresler;Bo Li
- 通讯作者:Ankit Raj;Y. Bresler;Bo Li
Certifying Some Distributional Fairness with Subpopulation Decomposition
通过子群体分解来证明一些分配公平性
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Mintong Kang, Linyi Li
- 通讯作者:Mintong Kang, Linyi Li
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bo Li其他文献
Permeability measurement and discovery of dissociation process of hydrate sediments
水合物沉积物渗透率测量与解离过程发现
- DOI:
10.1016/j.jngse.2020.103155 - 发表时间:
2020-03 - 期刊:
- 影响因子:0
- 作者:
Pengfei Shen;Gang Li;Bo Li;Xiaosen Li;Yunpei Liang;Qiunan Lv - 通讯作者:
Qiunan Lv
Utilization of recycled concrete fines and powders to produce alkali-activated slag concrete blocks
利用再生混凝土细粉和粉末生产碱激活矿渣混凝土砌块
- DOI:
10.1016/j.jclepro.2020.122115 - 发表时间:
2020 - 期刊:
- 影响因子:11.1
- 作者:
Pengfei Ren;Bo Li;Jin;T. Ling - 通讯作者:
T. Ling
Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys
Nb添加对Ti-Zr合金显微组织演变和压缩力学性能的影响
- DOI:
10.1016/j.jmst.2020.03.092 - 发表时间:
2021-04 - 期刊:
- 影响因子:10.9
- 作者:
Pengfei Ji;Bohan Chen;Bo Li;Yihao Tang;Guofeng Zhang;Xinyu Zhang;Mingzhen Ma;Riping Liu - 通讯作者:
Riping Liu
Variational implicit-solvent predictions of the dry-wet transition pathways for ligand-receptor binding and unbinding kinetics
配体-受体结合和解离动力学的干湿转变途径的变分隐式溶剂预测
- DOI:
10.1073/pnas.1902719116 - 发表时间:
2019 - 期刊:
- 影响因子:11.1
- 作者:
Shenggao Zhou;R. Gregor Weiss;Li-Tien Cheng;Joachim Dzubiella;J. Andrew McCammon;Bo Li - 通讯作者:
Bo Li
Transcatheter arterial chemoembolisation combined with lenvatinib and cabozantinib in the treatment of advanced hepatocellular carcinoma.
经导管动脉化疗栓塞联合乐伐替尼和卡博替尼治疗晚期肝细胞癌。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.6
- 作者:
Hong Liu;Xue;Jian;Qin Yang;Dai;Yong;Feng;Bo Li;Qi;Jun Zhang - 通讯作者:
Jun Zhang
Bo Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bo Li', 18)}}的其他基金
ERI: Robust and Scalable Manufacturing of Ultra-Sensitive and Selective Molecule Sensor Arrays
ERI:稳健且可扩展的超灵敏和选择性分子传感器阵列制造
- 批准号:
2301668 - 财政年份:2024
- 资助金额:
$ 20.8万 - 项目类别:
Standard Grant
Characterizing CmodAA-Containing Biosynthetic Pathways of Nonribosomal Peptides
表征非核糖体肽的含 CmodAA 生物合成途径
- 批准号:
2310177 - 财政年份:2023
- 资助金额:
$ 20.8万 - 项目类别:
Standard Grant
Collaborative Research: NRI: Smart Skins for Robotic Prosthetic Hand
合作研究:NRI:机器人假手智能皮肤
- 批准号:
2221102 - 财政年份:2022
- 资助金额:
$ 20.8万 - 项目类别:
Standard Grant
CAREER: DeepTrust: Enabling Robust Machine Learning with Exogenous Information
职业:DeepTrust:利用外源信息实现稳健的机器学习
- 批准号:
2046726 - 财政年份:2021
- 资助金额:
$ 20.8万 - 项目类别:
Continuing Grant
ATD: Statistical and Machine Learning Methods for Studying the Dynamics of Weather and Climate Extremes
ATD:研究天气和极端气候动态的统计和机器学习方法
- 批准号:
2124576 - 财政年份:2021
- 资助金额:
$ 20.8万 - 项目类别:
Standard Grant
Collaborative Research: Spatiotemporal Dynamics of Interacting Bacterial Communities in Compact Colonies
合作研究:紧密菌落中相互作用的细菌群落的时空动态
- 批准号:
2029574 - 财政年份:2020
- 资助金额:
$ 20.8万 - 项目类别:
Standard Grant
Sorting and Assembly of Nanomaterials on Polymer Substrates Using Fluidic and Weak Ultrasound Fields for Fabrication of Flexible Electronic Devices
使用流体和弱超声场在聚合物基底上分类和组装纳米材料以制造柔性电子器件
- 批准号:
2003077 - 财政年份:2020
- 资助金额:
$ 20.8万 - 项目类别:
Standard Grant
Travel Support for Student Participation at the 2018 ASME-IMECE Micro and Nano Technology Forum; Pittsburgh, PA, November 12-15, 2018
为学生参加2018年ASME-IMECE微纳米技术论坛提供差旅支持;
- 批准号:
1854005 - 财政年份:2018
- 资助金额:
$ 20.8万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Predicting the Threat of Vector-Borne Illnesses Using Spatiotemporal Weather Patterns
ATD:合作研究:利用时空天气模式预测媒介传播疾病的威胁
- 批准号:
1830312 - 财政年份:2018
- 资助金额:
$ 20.8万 - 项目类别:
Continuing Grant
An integrated experimental and computational study of erythrocyte adhesion mechanics in blood flows
血流中红细胞粘附力学的综合实验和计算研究
- 批准号:
1706295 - 财政年份:2017
- 资助金额:
$ 20.8万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 20.8万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335411 - 财政年份:2024
- 资助金额:
$ 20.8万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 20.8万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 20.8万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331401 - 财政年份:2024
- 资助金额:
$ 20.8万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331400 - 财政年份:2024
- 资助金额:
$ 20.8万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Connections between Optimization and Property Testing
合作研究:AF:小型:优化和性能测试之间的新联系
- 批准号:
2402572 - 财政年份:2024
- 资助金额:
$ 20.8万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342245 - 财政年份:2024
- 资助金额:
$ 20.8万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347321 - 财政年份:2024
- 资助金额:
$ 20.8万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Connections between Optimization and Property Testing
合作研究:AF:小型:优化和性能测试之间的新联系
- 批准号:
2402571 - 财政年份:2024
- 资助金额:
$ 20.8万 - 项目类别:
Standard Grant