ATD: Collaborative Research: Predicting the Threat of Vector-Borne Illnesses Using Spatiotemporal Weather Patterns

ATD:合作研究:利用时空天气模式预测媒介传播疾病的威胁

基本信息

  • 批准号:
    1830312
  • 负责人:
  • 金额:
    $ 21.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Vector-borne diseases affect virtually everyone on earth. Mosquitoes are the most widely distributed disease vectors and are a serious threat to human life and health. West Nile virus (WNV) is one of the mosquito-borne diseases for which there is still no effective treatment; to date, the Centers for Disease Control and Prevention has reported over 40,000 cases across the United States. Temperature and precipitation are the two most important weather variables that affect mosquito populations and thus affect the WNV transmission cycle. The mosquito infection rate (MIR) is considered an important mediator to study WNV risk. Based on surveillance data for WNV in Illinois, this project aims to develop new methodologies and algorithms to study WNV and MIR using weather and environmental variables. Specifically, the investigators plan first to make predictions of MIR and then characterize the spatial pattern of temperature and precipitation to identify the risk level of WNV human illness and MIR. They will also establish a WNV Index to provide a reliable and interpretable warning for vector-borne disease risk. Finally, since mosquito-borne diseases are particularly affected by rising temperatures, changing precipitation patterns, and a higher frequency of extreme weather events, the project aims to both quantitatively and qualitatively project the current risk to the future under climate change. The research will foster fundamental statistical methodology development as well as collaborations between statistics and public health. Graduate and undergraduate students will be engaged in aspects of the scientific research. The project will provide new results on the impact of climate change on national security, of general interest and importance to the wider public and policymakers.The methods of this project include a spatially-varying-coefficient model with functional weather covariates to make predictions of MIR, as well as a multiple-testing approach to characterize the spatial pattern of temperature and precipitation for ultimately classifying the weather pattern into different risk levels with respect to WNV. The statistical models and algorithms learned from the historical data will be applied to downscaled future weather data to study the impact of climate change on WNV human illness and MIR. The analyses will be based on massive data including WNV human cases, MIR, current and future spatio-temporal stochastic weather processes, land cover, and the length of daylight. The statistical methods used in the project are not only effective for this WNV study but can be a general methodology for a wide range of vector-borne diseases. The spatially-varying-coefficient model with functional covariates takes the continuous and dynamic influence of the retrospective weather on MIR into account while allowing the relationship between MIR and weather and other environmental variables to vary over a spatial domain. The characterization of the spatial weather pattern and the establishment of WNV Index provide a new perspective to study and prevent WNV risk. Compared to previous methods that evaluate the difference between two spatio-temporal random fields as a whole, the multiple-testing approach in this project can detect exactly where the differences occur. This feature is crucial for regional risk detection. Quantifying the impact of climate change on vector-borne diseases is essential to policymakers; the results of the project are expected to provide a reliable resource for such purposes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
病媒传播的疾病几乎影响到地球上的每一个人。 蚊子是分布最广的病媒,严重威胁人类的生命和健康。西尼罗河病毒(WNV)是蚊子传播的疾病之一,目前仍没有有效的治疗方法;迄今为止,美国疾病控制和预防中心已报告了超过40,000例病例。温度和降水是影响蚊子数量的两个最重要的天气变量,从而影响西尼罗河病毒的传播周期。 蚊子感染率(MIR)被认为是研究西尼罗河病毒风险的重要媒介。基于伊利诺伊州西尼罗河病毒的监测数据,该项目旨在开发新的方法和算法,利用天气和环境变量研究西尼罗河病毒和MIR。具体来说,研究人员计划首先对MIR进行预测,然后描述温度和降水的空间模式,以确定WNV人类疾病和MIR的风险水平。他们还将建立一个西尼罗河病毒指数,为媒介传播的疾病风险提供可靠和可解释的警告。最后,由于蚊子传播的疾病特别受到气温上升,降水模式变化和极端天气事件频率增加的影响,该项目旨在定量和定性地预测气候变化对未来的当前风险。这项研究将促进基本统计方法的发展以及统计和公共卫生之间的合作。研究生和本科生将从事科学研究方面的工作。该项目将提供关于气候变化对国家安全影响的新成果,这对广大公众和政策制定者具有普遍意义和重要性。该项目的方法包括一个空间变化系数模型,其中包含功能性天气协变量,用于预测MIR,以及多重-一种测试方法来表征温度和降水的空间模式,以最终将天气模式分类为不同的风险与WNV相比。从历史数据中学习到的统计模型和算法将应用于缩小的未来天气数据,以研究气候变化对WNV人类疾病和MIR的影响。分析将基于大量数据,包括WNV人类病例,MIR,当前和未来的时空随机天气过程,土地覆盖和日光长度。该项目中使用的统计方法不仅对本西尼罗河病毒研究有效,而且可以作为广泛的病媒传播疾病的通用方法。函数协变量的空间变化系数模型考虑了回顾性天气对MIR的连续和动态影响,同时允许MIR与天气和其他环境变量之间的关系在空间域上变化。西尼罗河灾害的空间天气型特征和指数的建立为研究和防范西尼罗河灾害提供了新的视角。与以往的方法,评估两个时空随机场之间的差异作为一个整体,多重测试方法在这个项目中可以准确地检测差异发生。这一特征对于区域风险检测至关重要。量化气候变化对病媒传播疾病的影响对政策制定者至关重要;该项目的结果预计将为此提供可靠的资源。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Impact of Adulticide on Culex Abundance and Infection Rate in North Shore of Cook County, Illinois
杀成虫对伊利诺伊州库克县北岸库蚊数量和感染率的影响
Evaluating Proxy Influence in Assimilated Paleoclimate Reconstructions—Testing the Exchangeability of Two Ensembles of Spatial Processes
评估同化古气候重建中的代理影响——测试两个空间过程系综的可交换性
Scalable multiple changepoint detection for functional data sequences
  • DOI:
    10.1002/env.2710
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Trevor Harris;Bo Li;J. D. Tucker
  • 通讯作者:
    Trevor Harris;Bo Li;J. D. Tucker
Elastic Depths for Detecting Shape Anomalies in Functional Data
  • DOI:
    10.1080/00401706.2020.1811156
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Trevor Harris;J. Tucker;Bo Li;L. Shand
  • 通讯作者:
    Trevor Harris;J. Tucker;Bo Li;L. Shand
Detection of Local Differences in Spatial Characteristics Between Two Spatiotemporal Random Fields
两个时空随机场之间空间特征的局部差异检测
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bo Li其他文献

Permeability measurement and discovery of dissociation process of hydrate sediments
水合物沉积物渗透率测量与解离过程发现
Utilization of recycled concrete fines and powders to produce alkali-activated slag concrete blocks
利用再生混凝土细粉和粉末生产碱激活矿渣混凝土砌块
  • DOI:
    10.1016/j.jclepro.2020.122115
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Pengfei Ren;Bo Li;Jin;T. Ling
  • 通讯作者:
    T. Ling
Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys
Nb添加对Ti-Zr合金显微组织演变和压缩力学性能的影响
  • DOI:
    10.1016/j.jmst.2020.03.092
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Pengfei Ji;Bohan Chen;Bo Li;Yihao Tang;Guofeng Zhang;Xinyu Zhang;Mingzhen Ma;Riping Liu
  • 通讯作者:
    Riping Liu
Variational implicit-solvent predictions of the dry-wet transition pathways for ligand-receptor binding and unbinding kinetics
配体-受体结合和解离动力学的干湿转变途径的变分隐式溶剂预测
Transcatheter arterial chemoembolisation combined with lenvatinib and cabozantinib in the treatment of advanced hepatocellular carcinoma.
经导管动脉化疗栓塞联合乐伐替尼和卡博替尼治疗晚期肝细胞癌。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Hong Liu;Xue;Jian;Qin Yang;Dai;Yong;Feng;Bo Li;Qi;Jun Zhang
  • 通讯作者:
    Jun Zhang

Bo Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bo Li', 18)}}的其他基金

ERI: Robust and Scalable Manufacturing of Ultra-Sensitive and Selective Molecule Sensor Arrays
ERI:稳健且可扩展的超灵敏和选择性分子传感器阵列制造
  • 批准号:
    2301668
  • 财政年份:
    2024
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant
Characterizing CmodAA-Containing Biosynthetic Pathways of Nonribosomal Peptides
表征非核糖体肽的含 CmodAA 生物合成途径
  • 批准号:
    2310177
  • 财政年份:
    2023
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Smart Skins for Robotic Prosthetic Hand
合作研究:NRI:机器人假手智能皮肤
  • 批准号:
    2221102
  • 财政年份:
    2022
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant
CAREER: DeepTrust: Enabling Robust Machine Learning with Exogenous Information
职业:DeepTrust:利用外源信息实现稳健的机器学习
  • 批准号:
    2046726
  • 财政年份:
    2021
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Continuing Grant
ATD: Statistical and Machine Learning Methods for Studying the Dynamics of Weather and Climate Extremes
ATD:研究天气和极端气候动态的统计和机器学习方法
  • 批准号:
    2124576
  • 财政年份:
    2021
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Spatiotemporal Dynamics of Interacting Bacterial Communities in Compact Colonies
合作研究:紧密菌落中相互作用的细菌群落的时空动态
  • 批准号:
    2029574
  • 财政年份:
    2020
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant
Sorting and Assembly of Nanomaterials on Polymer Substrates Using Fluidic and Weak Ultrasound Fields for Fabrication of Flexible Electronic Devices
使用流体和弱超声场在聚合物基底上分类和组装纳米材料以制造柔性电子器件
  • 批准号:
    2003077
  • 财政年份:
    2020
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Rigorous Approaches for Scalable Privacy-preserving Deep Learning
AF:小型:协作研究:可扩展的隐私保护深度学习的严格方法
  • 批准号:
    1910100
  • 财政年份:
    2019
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant
Travel Support for Student Participation at the 2018 ASME-IMECE Micro and Nano Technology Forum; Pittsburgh, PA, November 12-15, 2018
为学生参加2018年ASME-IMECE微纳米技术论坛提供差旅支持;
  • 批准号:
    1854005
  • 财政年份:
    2018
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant
An integrated experimental and computational study of erythrocyte adhesion mechanics in blood flows
血流中红细胞粘附力学的综合实验和计算研究
  • 批准号:
    1706295
  • 财政年份:
    2017
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant

相似国自然基金

载铁生物炭对土壤镉污染的吸附固定及微生物协同作用机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
数字经济赋能重庆制造业供应链协同减排的机制设计与实施路径研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
功能化破骨前体细胞膜递送双siRNA协同调控骨免疫和骨稳态改善骨质疏松的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
电氢综合能源系统时空协同调控关键技术研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于群体博弈与深度强化学习的USV-AUV异构系统协同控制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
氟配位双金属单原子纳米反应器的构筑及催化协同固硫机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
数据驱动的航行体构型/润湿性协同调控入水动力学研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
微尺度光-酶协同催化流动反应过程及其强化机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
高温蠕变与疲劳协同作用下多裂纹扩展寿命算法研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
高湿高热耦合环境下相变储能-自保温墙体协同节能作用机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319370
  • 财政年份:
    2023
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319552
  • 财政年份:
    2023
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319371
  • 财政年份:
    2023
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319372
  • 财政年份:
    2023
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319551
  • 财政年份:
    2023
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220523
  • 财政年份:
    2023
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220529
  • 财政年份:
    2023
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了