RI: Small: Scalable Online Learning with Gaussian Processes
RI:小型:使用高斯过程的可扩展在线学习
基本信息
- 批准号:1910266
- 负责人:
- 金额:$ 39.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2019-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The modern world is filled with highly complex systems interacting to transport goods and raw materials, to manufacture the tiny components that power phones and laptops, and to assist surgeons in delicate medical procedures. Every day, the operators of these systems must make general decisions like how to schedule workers and deliveries, and specific decisions like how a certain robot in an assembly line should function. In each case, a good decision must account not only for what is known about the environment, but also what is unknown. Sometimes more information should be gathered, and sometimes action must be taken to avoid unlikely but costly mistakes. Moreover, every decision affects the next, and errors and delays in judgement at each step can be propagated and amplified. Scientists rely heavily on computer models to control for unknowns when making decisions, but in many situations the models are simply too slow to be useful. This research will greatly reduce the computational requirements needed for a robust representation of uncertainty, meaning computer models can quantify the effect of uncertainty more quickly and reliably, at a lower cost. In a world where unknowns are carefully modeled, autonomous vehicles are safer, infrastructure is more efficient, and scientific experiments are more informative.Gaussian processes are a gold standard for uncertainty representation. However, the high computational cost of making predictions, after training, has limited their applicability in the sequential decision making frameworks for Bayesian optimization and reinforcement learning, where the quality of uncertainty estimates can have enormous impact. This research develops algebraic methods that exploit advances in hardware design for scalable Gaussian processes in these settings. This work will broaden the applicability of Bayesian optimization methods to general purpose objectives, with crucial scientific impacts such as automating NMR spectroscopy. This research will also enable more realistic assumptions in model-based reinforcement learning, to capture many possible future states of an engineering system, efficient exploration of possible states, and representation of high dimensional state spaces. These features are an important step towards automatic control in complicated engineering systems, such as unmanned vehicles, where data is costly to acquire and safety guarantees are critical. Overall this work will help unlock the potential of probabilistic methods for sequential online decision making, while providing interactive engineering demonstrations in educational settings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代世界充满了高度复杂的系统,这些系统相互作用,运输货物和原材料,制造手机和笔记本电脑的微型组件,并协助外科医生进行精细的医疗手术。每天,这些系统的操作员都必须做出一般性的决定,比如如何安排工人和交付,以及具体的决定,比如装配线上的某个机器人应该如何工作。在每一种情况下,一个好的决策不仅要考虑到环境的已知情况,还要考虑到环境的未知情况。有时候应该收集更多的信息,有时候必须采取行动以避免不太可能但代价高昂的错误。此外,每一个决定都会影响下一个决定,每一步的判断错误和延误都会传播和扩大。科学家们在做决策时严重依赖计算机模型来控制未知因素,但在许多情况下,模型太慢而无法使用。这项研究将大大降低不确定性的鲁棒表示所需的计算要求,这意味着计算机模型可以更快,更可靠地量化不确定性的影响,成本更低。在一个未知数被仔细建模的世界里,自动驾驶汽车更安全,基础设施更高效,科学实验信息更丰富。高斯过程是不确定性表示的黄金标准。然而,在训练后进行预测的高计算成本限制了它们在贝叶斯优化和强化学习的顺序决策框架中的适用性,其中不确定性估计的质量可能会产生巨大的影响。本研究开发的代数方法,利用这些设置中的可扩展高斯过程的硬件设计的进步。这项工作将扩大贝叶斯优化方法对通用目标的适用性,并产生重要的科学影响,例如自动化NMR光谱。这项研究还将使基于模型的强化学习中的假设更加现实,以捕获工程系统的许多可能的未来状态,有效地探索可能的状态,并表示高维状态空间。这些功能是实现复杂工程系统自动控制的重要一步,例如无人驾驶车辆,在这些系统中,获取数据的成本很高,安全保障至关重要。总的来说,这项工作将有助于释放概率方法的潜力,为顺序在线决策,同时提供互动的工程示范,在教育settings.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Shengyang Sun-;Jiaxin Shi;A. Wilson;R. Grosse
- 通讯作者:Shengyang Sun-;Jiaxin Shi;A. Wilson;R. Grosse
SKIing on Simplices: Kernel Interpolation on the Permutohedral Lattice for Scalable Gaussian Processes
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Sanyam Kapoor;Marc Finzi;Ke Alexander Wang;A. Wilson
- 通讯作者:Sanyam Kapoor;Marc Finzi;Ke Alexander Wang;A. Wilson
Kernel Interpolation for Scalable Online Gaussian Processes
- DOI:
- 发表时间:2021-03
- 期刊:
- 影响因子:2.7
- 作者:S. Stanton;Wesley J. Maddox;Ian A. Delbridge;A. Wilson
- 通讯作者:S. Stanton;Wesley J. Maddox;Ian A. Delbridge;A. Wilson
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
BoTorch:高效蒙特卡罗贝叶斯优化框架
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Balandat, M;Karrer, B;Jiang, D;Daulton, S;Letham, B;Wilson, A.G.;Bakshy, E
- 通讯作者:Bakshy, E
Fast Adaptation with Linearized Neural Networks
- DOI:
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Wesley J. Maddox;Shuai Tang;Pablo G. Moreno;A. Wilson;Andreas C. Damianou
- 通讯作者:Wesley J. Maddox;Shuai Tang;Pablo G. Moreno;A. Wilson;Andreas C. Damianou
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Wilson其他文献
Knowledge mobilisation for chronic disease prevention: the case of the Australian Prevention Partnership Centre
慢性病预防的知识动员:澳大利亚预防合作中心的案例
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:4
- 作者:
S. Wutzke;S. Rowbotham;A. Haynes;P. Hawe;P. Kelly;S. Redman;Seanna L. Davidson;J. Stephenson;Marge Overs;Andrew Wilson - 通讯作者:
Andrew Wilson
Networks of Power: Electrification in Western Society, 1880-1930.
电力网络:西方社会的电气化,1880-1930。
- DOI:
10.2307/2597039 - 发表时间:
1985 - 期刊:
- 影响因子:0
- 作者:
Andrew Wilson;Thomas P. Hughes - 通讯作者:
Thomas P. Hughes
Laser Scanning of Skeletal Pathological Conditions
骨骼病理状况的激光扫描
- DOI:
10.1016/b978-0-12-804602-9.00010-2 - 发表时间:
2017 - 期刊:
- 影响因子:1.4
- 作者:
Andrew Wilson;Andrew D. Holland;T. Sparrow - 通讯作者:
T. Sparrow
Women’s Employment and Different Societal Effects in France, Sweden, and the United Kingdom
法国、瑞典和英国的女性就业及其不同的社会影响
- DOI:
10.1080/15579336.1995.11770108 - 发表时间:
1995 - 期刊:
- 影响因子:2.1
- 作者:
Anne;Andrew Wilson - 通讯作者:
Andrew Wilson
Raman spectroscopy as a non‐destructive screening technique for studying white substances from archaeological and forensic burial contexts
拉曼光谱作为一种无损筛选技术,用于研究考古和法医埋葬环境中的白色物质
- DOI:
10.1002/jrs.4526 - 发表时间:
2014 - 期刊:
- 影响因子:2.5
- 作者:
E. Schotsmans;Andrew Wilson;Rhea Brettell;T. Munshi;H. Edwards - 通讯作者:
H. Edwards
Andrew Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Wilson', 18)}}的其他基金
Kilmallock - Derry - Bradford: Twinning North-South Irish Walled Towns and UK Cities of Culture'
基尔马洛克 - 德里 - 布拉德福德:南北爱尔兰城墙城镇和英国文化之城的结对姐妹”
- 批准号:
AH/Y007409/1 - 财政年份:2023
- 资助金额:
$ 39.91万 - 项目类别:
Research Grant
Coiled-coil Technology for Regulating Intracellular Protein-protein Interactions
用于调节细胞内蛋白质-蛋白质相互作用的卷曲螺旋技术
- 批准号:
BB/V008412/2 - 财政年份:2023
- 资助金额:
$ 39.91万 - 项目类别:
Research Grant
Deciphering the function of intrinsically disordered protein regions in a cellular context
破译细胞环境中本质上无序的蛋白质区域的功能
- 批准号:
BB/V003577/2 - 财政年份:2023
- 资助金额:
$ 39.91万 - 项目类别:
Research Grant
CAREER: New Frontiers in Bayesian Deep Learning
职业:贝叶斯深度学习的新领域
- 批准号:
2145492 - 财政年份:2022
- 资助金额:
$ 39.91万 - 项目类别:
Continuing Grant
Collaborative Research: MRA: Distributions of Macrofungi: Quantifying Ecosystem and Climate Drivers of Fungal Reproduction
合作研究:MRA:大型真菌的分布:量化真菌繁殖的生态系统和气候驱动因素
- 批准号:
2106105 - 财政年份:2022
- 资助金额:
$ 39.91万 - 项目类别:
Standard Grant
Capability for Human Bioarchaeology and Digital Collections
人类生物考古学和数字馆藏的能力
- 批准号:
AH/V01255X/1 - 财政年份:2022
- 资助金额:
$ 39.91万 - 项目类别:
Research Grant
People, Heritage & Place: Using Heritage to Enhance Community and Well-being in Saltaire, Bradford
人物、遗产
- 批准号:
AH/W009102/1 - 财政年份:2022
- 资助金额:
$ 39.91万 - 项目类别:
Research Grant
Reimagining Tanzania's Townscape Heritage
重新构想坦桑尼亚的城市景观遗产
- 批准号:
AH/W006723/1 - 财政年份:2021
- 资助金额:
$ 39.91万 - 项目类别:
Research Grant
Deciphering the function of intrinsically disordered protein regions in a cellular context
破译细胞环境中本质上无序的蛋白质区域的功能
- 批准号:
BB/V003577/1 - 财政年份:2021
- 资助金额:
$ 39.91万 - 项目类别:
Research Grant
Coiled-coil Technology for Regulating Intracellular Protein-protein Interactions
用于调节细胞内蛋白质-蛋白质相互作用的卷曲螺旋技术
- 批准号:
BB/V008412/1 - 财政年份:2021
- 资助金额:
$ 39.91万 - 项目类别:
Research Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
RI: Small: Semantic 3D Neural Rendering Field Models that are Accurate, Complete, Flexible, and Scalable
RI:小型:准确、完整、灵活且可扩展的语义 3D 神经渲染场模型
- 批准号:
2312102 - 财政年份:2023
- 资助金额:
$ 39.91万 - 项目类别:
Continuing Grant
RI: Small: Cooperative Planning and Learning via Scalable and Learnable Multi-Agent Commitments
RI:小型:通过可扩展和可学习的多代理承诺进行合作规划和学习
- 批准号:
2154904 - 财政年份:2022
- 资助金额:
$ 39.91万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Scalable Decentralized Planning in Open Multiagent Environments
RI:小型:协作研究:开放多智能体环境中的可扩展去中心化规划
- 批准号:
1910156 - 财政年份:2019
- 资助金额:
$ 39.91万 - 项目类别:
Standard Grant
RI: Small: Scalable Online Learning with Gaussian Processes
RI:小型:使用高斯过程的可扩展在线学习
- 批准号:
1951856 - 财政年份:2019
- 资助金额:
$ 39.91万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: RUI: Scalable Decentralized Planning in Open Multiagent Environments
RI:小型:协作研究:RUI:开放多代理环境中的可扩展去中心化规划
- 批准号:
1909513 - 财政年份:2019
- 资助金额:
$ 39.91万 - 项目类别:
Standard Grant
RI: Small: Fast, Scalable Joint Inference for NLP using Markov Logic
RI:小型:使用马尔可夫逻辑进行快速、可扩展的 NLP 联合推理
- 批准号:
1528037 - 财政年份:2015
- 资助金额:
$ 39.91万 - 项目类别:
Standard Grant
RI: Small: Crowd-Sourcing the World: Scalable Methods for Dynamic Structure from Motion
RI:小型:众包世界:运动动态结构的可扩展方法
- 批准号:
1423676 - 财政年份:2014
- 资助金额:
$ 39.91万 - 项目类别:
Continuing Grant
RI: Small: A Generic Mid-Level Representation as Object Part Hypotheses for Scalable Object Category Recognition
RI:小:作为可扩展对象类别识别的对象部分假设的通用中级表示
- 批准号:
1319914 - 财政年份:2013
- 资助金额:
$ 39.91万 - 项目类别:
Standard Grant
RI: Small: Ultra-Sparsifiers for Fast and Scalable Mapping and 3D Reconstruction on Mobile Robots
RI:小型:用于移动机器人快速、可扩展测绘和 3D 重建的超稀疏器
- 批准号:
1115678 - 财政年份:2011
- 资助金额:
$ 39.91万 - 项目类别:
Standard Grant
RI: Small: Scalable Algorithms for Learning to Recover Logical Form from Natural Language
RI:小型:用于学习从自然语言恢复逻辑形式的可扩展算法
- 批准号:
1115966 - 财政年份:2011
- 资助金额:
$ 39.91万 - 项目类别:
Standard Grant