AF: RI: Small: Barriers in Adversarially Robust Learning
AF:RI:小:对抗性鲁棒学习的障碍
基本信息
- 批准号:1910681
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Learning algorithms are increasingly taking on roles that were previously held by humans. Examples include face recognition, malware detection, making decisions about loans or bail, etc. Learning algorithms, however, are usually sensitive to adversarial manipulations happening during training or decision time. Due to the sensitivity of the contexts in which these algorithms are used, it is crucial to understand the power and limitations of provably robust methods in such adversarial contexts. The goal of this project is to study adversarial robustness from a provable perspective and identify the barriers that might exist against it. The project will build connections to other areas such as computational complexity as well as cryptography. The project also involves mentoring PhD students. The findings will be incorporated into newly designed courses and will be disseminated via workshops, conferences, and journals.The project, more specifically, will focus on two parts that enable the main goals outlined above. The first part is to model adversarially robust learning formally to enable a provable approach. Indeed, Cryptography has benefited tremendously from such mathematically rigorous approach to security, and to reach similar results, adversarially robust learning needs a similar definitional approach that models subtle aspects of the attack such as: the computational complexity of the attacker, its precise knowledge, and the role of randomness. The second part of this project aims at identifying barriers that exist against provable robustness for adversarial learning. This project will study barriers against both information theoretic (a.k.a. statistic) as well as computational security. Information theoretic security models the adversary as an all powerful entity, while the more realistic model of computational security, which is widely used in Cryptography, models the attacker as a polynomial-time algorithm. Identifying these barriers is an essential part of designing optimally robust learning methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
学习算法正越来越多地承担起以前由人类承担的角色。例子包括人脸识别、恶意软件检测、决定贷款或保释等。然而,学习算法通常对在训练或决策期间发生的对抗性操作很敏感。由于使用这些算法的上下文的敏感性,理解在这种对抗性上下文中可证明的鲁棒方法的功能和局限性至关重要。该项目的目标是从可证明的角度研究对抗性鲁棒性,并确定可能存在的障碍。该项目将建立与其他领域的联系,如计算复杂性和密码学。该项目还包括指导博士生。研究结果将纳入新设计的课程,并将通过讲习班、会议和期刊传播。更具体地说,该项目将侧重于实现上述主要目标的两个部分。第一部分是正式建模对抗鲁棒学习,以实现可证明的方法。事实上,密码学从这种数学上严格的安全方法中受益匪浅,为了达到类似的结果,对抗健壮的学习需要类似的定义方法来模拟攻击的微妙方面,例如:攻击者的计算复杂性,其精确知识和随机性的作用。该项目的第二部分旨在确定对抗学习中存在的可证明的鲁棒性障碍。这个项目将研究信息理论(又名统计)和计算安全的障碍。信息安全理论将攻击者建模为一个强大的实体,而广泛应用于密码学的计算安全模型将攻击者建模为一个多项式时间算法。识别这些障碍是设计最佳稳健学习方法的重要组成部分。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning and Certification under Instance-targeted Poisoning
- DOI:
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Ji Gao;Amin Karbasi;Mohammad Mahmoody
- 通讯作者:Ji Gao;Amin Karbasi;Mohammad Mahmoody
Overparameterization from Computational Constraints
计算约束的过度参数化
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Garg, Sanjam;Jha, Somesh;Mahloujifar, Saeed;Mahmoody, Mohammad;Wang, Mingyuan.
- 通讯作者:Wang, Mingyuan.
Adversarially Robust Learning Could Leverage Computational Hardness
- DOI:
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Sanjam Garg;S. Jha;Saeed Mahloujifar;Mohammad Mahmoody
- 通讯作者:Sanjam Garg;S. Jha;Saeed Mahloujifar;Mohammad Mahmoody
Deletion inference, reconstruction, and compliance in machine (un)learning
机器(非)学习中的删除推理、重建和合规性
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Gao, Ji;Garg, Sanjam;Mahmoody, Mohammad;Vasudevan, Prashant Nalini.
- 通讯作者:Vasudevan, Prashant Nalini.
A Separation Result Between Data-oblivious and Data-aware Poisoning Attacks
- DOI:
- 发表时间:2020-03
- 期刊:
- 影响因子:0
- 作者:Samuel Deng;Sanjam Garg;S. Jha;Saeed Mahloujifar;Mohammad Mahmoody;Abhradeep Thakurta
- 通讯作者:Samuel Deng;Sanjam Garg;S. Jha;Saeed Mahloujifar;Mohammad Mahmoody;Abhradeep Thakurta
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohammad Mahmoody Ghidary其他文献
Mohammad Mahmoody Ghidary的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohammad Mahmoody Ghidary', 18)}}的其他基金
SaTC: CORE: Medium: Collaborative: New Directions in Public-Key and Identity-Based Encryption
SaTC:核心:媒介:协作:公钥和基于身份的加密的新方向
- 批准号:
1936799 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
醒脑静多靶点调控PI3K/Akt通路抑制CI/RI氧化应激—基于网络药理学及体内、外实验研究
- 批准号:2025JJ90117
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
IgA-FcαRI介导的Syk/NLRP3/caspase-1通路在线状IgA大疱性皮病
中的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于双修饰ANG-RNH1系统阻抑RI复合物生成机制建立口腔黏膜等效物血管化稳态
- 批准号:82401112
- 批准年份:2024
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跨膜蛋白LRP5胞外域调控膜受体TβRI促钛表面BMSCs归巢、分化的研究
- 批准号:82301120
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“免疫-神经”网络探讨眼针活化CI/RI大鼠MC靶向H3R调节“免疫监视”的抗炎机制
- 批准号:82374375
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
Dectin-2通过促进FcεRI聚集和肥大细胞活化加剧哮喘发作的机制研究
- 批准号:82300022
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
藏药甘肃蚤缀β-咔啉生物碱类TβRI抑制剂的发现及其抗肺纤维化作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
nCs通过TβRI结合并磷酸化Axin促进颌骨成骨反应的作用及机制研究
- 批准号:2022J011347
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
TβRI的UFM化修饰调控TGF-β信号通路和乳腺癌转移的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于 FcεRI 信号通路介导的肥大细胞脱颗粒过程研究支气管哮喘的机制及中药干预
- 批准号:2022JJ70115
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
RI: Small: Understanding Hand Interaction In The Jumble of Internet Videos
RI:小:在混乱的互联网视频中理解手部交互
- 批准号:
2426592 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
- 批准号:
2313131 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
- 批准号:
2232298 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
- 批准号:
2345528 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Travel: RI: Small: Student Travel Grant for 20th International Conference on Principles of Knowledge Representation and Reasoning and Doctoral Consortium
旅费:RI:小额:第 20 届知识表示和推理原理及博士联盟国际会议学生旅费补助
- 批准号:
2328173 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
RI: Small: The Surprising Power of Sequential Fair Allocation Mechanisms
RI:小:顺序公平分配机制的惊人力量
- 批准号:
2327057 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2232055 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
RI: Small: Large-Scale Game-Theoretic Reasoning with Incomplete Information
RI:小型:不完整信息的大规模博弈论推理
- 批准号:
2214141 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CISE-ANR: RI: Small: Numerically efficient reinforcement learning for constrained systems with super-linear convergence (NERL)
CISE-ANR:RI:小:具有超线性收敛 (NERL) 的约束系统的数值高效强化学习
- 批准号:
2315396 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2232054 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant