NSF-BSF: CCSS: Resistance Tomography with 2D Sensor Membranes

NSF-BSF:CCSS:采用 2D 传感器膜的电阻断层扫描

基本信息

  • 批准号:
    1912694
  • 负责人:
  • 金额:
    $ 49.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Touchpads and touchscreens in today's computers and cell phones have two disadvantages - first, they are rigid, and second, they require a complex manufacturing process with many individual sensors. A flexible and easy-to-manufacture pressure sensor could function as an artificial skin for people and objects and could lead to cheap and convenient solutions for wearable computer interfaces, touch enabled spaces, and biomedical movement diagnostics. Such a device with a wireless interface will allow for ease-of-use in sensor interfaces. With the help of an unconventional sensor mapping method called resistive tomography, it is possible to create such a platform using only a single piece of easy-to-manufacture pressure-sensitive material to map pressures. Device fabrication for such a flexible sensor is trivial in comparison to standard sensor arrays, with the complexity shifted to the signal processing needed to interpret the pressure pattern. Multiple measurements using various combinations of contacts can create the full pressure map. It is expected that the technology that is developed from this effort will lead to new kinds of flexible sensors for wearable touch-pad like interfaces and biomedical movement diagnostics.Most of today's two dimensional (2D) touch sensors and strain sensors require an indexed array of individual sensors in order to gather spatial information, requiring significant complexity in the fabrication stage, while impairing durability and broader applicability. This work proposes a new means of gathering 2D spatial data combining touch sensing and strain mapping that uses a trivial fabricated composite membrane to serve as the spatial pressure sensor, with the complexity shifted from fabrication to the computational domain through a tomographic mapping algorithm. This research will develop new tomographic algorithms based on a Zernike moment analysis to convert resistive four-point measurements at the periphery of a strain-sensitive membrane into a 2D map of the local pressures applied throughout the area of the membrane. The membrane will be made of a nanotube-silicone conducting composite rubber developed for this purpose. An energy-efficient measurement architecture and wireless interface to the membrane will allow this strain-sensor map to be easily employed in-the-field for various mechanical, medical, engineering, and personal-user applications. The low cost of fabrication will lend itself to ubiquitous touch sensors and novel modes of interaction for wearable and Internet-of-Everything applications. The trivial fabrication method of the sensor component and the conformability of the sensor around any shape make for a mass-producible, easily implemented, and highly versatile strain sensor and flexible touchpad. The exact algorithms to be investigated here can be applied on a much broader class of systems, expanding the utility of tomographic methods in sensing. The conducting elastomer sensor material will be developed to optimize the tomography application envisioned here. The ideas generated in the course of this proposal are expected to generate new intellectual property in the area of sensors, such as flexible, wearable touchpads for computer interfaces, likely to spawn new industry products. The conformal ability to shape such a sensor will lead to broader applications in the health industry for rehabilitation, such as a tomographic sock to sense bending and mechanical strain at the elbow, knee, or torso for health monitoring. Durable, long-lasting, zero-maintenance haptic skin for prosthetic limbs and robotics can be produced at extremely low cost with the technology proposed here. This effort will train graduate students in essential skills for critical thinking and design methodologies, as well as developing skills in applied math, physics, and materials design with newly developed courses including subject matter developed under this research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当今计算机和手机中的触摸板和触摸屏有两个缺点-第一,它们是刚性的,第二,它们需要复杂的制造工艺和许多单独的传感器。 一个灵活且易于制造的压力传感器可以作为人和物体的人造皮肤,并可以为可穿戴计算机接口、触摸空间和生物医学运动诊断提供廉价而方便的解决方案。 这种具有无线接口的设备将允许传感器接口的易用性。借助一种称为电阻层析成像的非常规传感器映射方法,可以仅使用单片易于制造的压敏材料来创建这样的平台来映射压力。 与标准传感器阵列相比,这种柔性传感器的设备制造是微不足道的,复杂性转移到解释压力模式所需的信号处理上。 使用各种触点组合的多次测量可以创建完整的压力图。 预计从这项工作中开发的技术将导致可穿戴触摸板等接口和生物医学运动诊断的新型柔性传感器。当今的大多数二维(2D)触摸传感器和应变传感器需要索引的单个传感器阵列以收集空间信息,这需要在制造阶段显着复杂,同时损害耐用性和更广泛的适用性。 这项工作提出了一种新的方法,收集2D空间数据相结合的触摸传感和应变映射,使用一个平凡的制造复合膜作为空间压力传感器,与复杂性从制造转移到计算域,通过层析成像映射算法。 这项研究将开发新的层析成像算法的基础上Zernike矩分析转换电阻四点测量在应变敏感膜的周边到一个2D地图的局部压力施加在整个区域的膜。 该膜将由为此目的开发的纳米管-硅树脂导电复合橡胶制成。 节能测量架构和膜的无线接口将使这种应变传感器地图能够轻松地在现场应用于各种机械、医疗、工程和个人用户应用。 低制造成本将有助于无处不在的触摸传感器和可穿戴和万物互联应用的新型交互模式。传感器组件的简单制造方法和传感器围绕任何形状的顺应性有助于大规模生产、容易实现和高度通用的应变传感器和柔性触摸板。这里要研究的精确算法可以应用于更广泛的一类系统,扩大了层析成像方法在传感中的实用性。导电弹性体传感器材料将被开发,以优化这里设想的断层扫描应用。该提案过程中产生的想法有望在传感器领域产生新的知识产权,例如用于计算机界面的柔性可穿戴触摸板,可能会产生新的工业产品。塑造此类传感器的适形能力将在健康行业的康复中获得更广泛的应用,例如用于感测手肘、膝盖或躯干处的弯曲和机械应变以进行健康监测的断层扫描袜子。 使用本文提出的技术,可以以极低的成本生产用于假肢和机器人的耐用、持久、零维护触觉皮肤。这项工作将培养研究生的批判性思维和设计方法的基本技能,以及开发应用数学,物理和材料设计的技能与新开发的课程,包括根据本研究开发的主题。该奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Grayson其他文献

Visualizing toral automorphisms
  • DOI:
    10.1007/bf03025260
  • 发表时间:
    2009-01-12
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Matthew Grayson;Bruce Kitchens;George Zettler
  • 通讯作者:
    George Zettler
Critical sets in 3-space
Spectral measurement of the Hall angle response in normal state cuprate superconductors.
正常状态铜酸盐超导体中霍尔角响应的光谱测量。
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Matthew Grayson;L. Rigal;D. Schmadel;H. Drew;P. J. Kung
  • 通讯作者:
    P. J. Kung
Four-point measurements of n- and p-type two-dimensional systems fabricated with cleaved-edge overgrowth
使用切边过度生长制造的 n 型和 p 型二维系统的四点测量
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Grayson;S. Roth;Ying Xiang;F. Fischer;D. Schuh;M. Bichler
  • 通讯作者:
    M. Bichler
p × n-Type Transverse Thermoelectrics: A Novel Type of Thermal Management Material
  • DOI:
    10.1007/s11664-015-3666-z
  • 发表时间:
    2015-03-10
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Yang Tang;Boya Cui;Chuanle Zhou;Matthew Grayson
  • 通讯作者:
    Matthew Grayson

Matthew Grayson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Grayson', 18)}}的其他基金

Machine Learning and Molecular Modelling: A Synergistic Approach to Rapid Reactivity Prediction
机器学习和分子建模:快速反应预测的协同方法
  • 批准号:
    EP/W003724/1
  • 财政年份:
    2022
  • 资助金额:
    $ 49.08万
  • 项目类别:
    Research Grant
DMREF: Collaborative Research: Synthesis, Characterization, and Modeling of Complex Amorphous Semiconductors for Future Device Applications
DMREF:协作研究:用于未来器件应用的复杂非晶半导体的合成、表征和建模
  • 批准号:
    1729016
  • 财政年份:
    2017
  • 资助金额:
    $ 49.08万
  • 项目类别:
    Standard Grant
IRES: Nanomaterials undergraduate Research in Germany (NanoRING)
IRES:德国纳米材料本科研究(NanoRING)
  • 批准号:
    1460031
  • 财政年份:
    2015
  • 资助金额:
    $ 49.08万
  • 项目类别:
    Standard Grant
CAREER: Bose-Einstein Condensation Using Different Flavors of Electrons
职业:使用不同电子味道的玻色-爱因斯坦凝聚
  • 批准号:
    0748856
  • 财政年份:
    2008
  • 资助金额:
    $ 49.08万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
  • 批准号:
    8605726
  • 财政年份:
    1986
  • 资助金额:
    $ 49.08万
  • 项目类别:
    Fellowship Award

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 49.08万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 49.08万
  • 项目类别:
    Continuing Grant
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 49.08万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333889
  • 财政年份:
    2024
  • 资助金额:
    $ 49.08万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    $ 49.08万
  • 项目类别:
    Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 49.08万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 49.08万
  • 项目类别:
    Standard Grant
NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
  • 批准号:
    2400200
  • 财政年份:
    2024
  • 资助金额:
    $ 49.08万
  • 项目类别:
    Standard Grant
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
  • 批准号:
    2401159
  • 财政年份:
    2024
  • 资助金额:
    $ 49.08万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 49.08万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了