Hybrid Finite Element Methods for Geometric Partial Differential Equations
几何偏微分方程的混合有限元方法
基本信息
- 批准号:1913272
- 负责人:
- 金额:$ 21.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Finite element methods are among the most important, powerful tools in scientific computing. Their applications include several areas of Federal strategic interest: materials and manufacturing, biomedical engineering and biotechnology, structural engineering and civil infrastructure, environmental engineering, and more. They are widely used by scientists and engineers in academia, industry, and national laboratories to simulate large, complex physical systems. These physical systems often obey "conservation laws," which state that some quantity -- like mass, or energy, or electric charge -- can move around in space, but cannot appear or disappear spontaneously. It is desirable that simulations of these systems also obey these conservation laws, because they are so fundamental; otherwise, the simulated results may not be physically meaningful or trustworthy. However, this is not always the case with current methods. In this project, the PI will develop and analyze finite element methods that obey these conservation laws and preserve related physical properties. The success of this project would lead to new computational methods and improved understanding of current methods for a wide variety of scientific applications. Because the specific applications addressed by the proposed research are of high scientific value, this could have important ramifications for computational physics and engineering.The PI proposes to investigate structure-preserving hybrid finite element methods for partial differential equations (PDEs) containing local symmetries, invariants, and conservation laws. In applications, these locally-invariant geometric structures often have important physical meaning (e.g., conservation of charge in electromagnetics), so it is desirable to devise conservative numerical methods that preserve these structures exactly rather than approximately. Hybrid methods provide a natural framework for this, since one may examine local invariants, element-by-element, in terms of numerical traces and fluxes on their boundaries. The proposed research consists of two main components. (1) Hamiltonian PDEs, which are ubiquitous in physical applications, satisfy the multisymplectic conservation law, which is closely tied to physically-important reciprocity phenomena, traveling waves, dispersion relations, and bifurcations. The PI will extend his recent joint work on multisymplectic hybridizable discontinuous Galerkin (HDG) methods for spatial discretization to time-evolution problems, using spatial HDG semidiscretization and spacetime HDG methods. (2) While the time evolution of Maxwell's equations automatically preserves a divergence constraint associated with charge conservation, this is generally not true for finite element discretizations. Preliminary results show that this can be resolved using a class of hybrid methods, where charge conservation holds in the sense of the numerical electric flux. The PI proposes to extend this by analyzing nonconforming hybrid methods for the Maxwell eigenvalue problem, as well as hybrid methods for Yang-Mills theory using finite element exterior calculus.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
有限元方法是科学计算中最重要、最有力的工具之一。其应用包括联邦战略利益的几个领域:材料和制造,生物医学工程和生物技术,结构工程和民用基础设施,环境工程等。它们被学术界、工业界和国家实验室的科学家和工程师广泛用于模拟大型复杂的物理系统。这些物理系统通常遵守“守恒定律”,即某些量-如质量,能量或电荷-可以在空间中移动,但不能自发出现或消失。理想的是,这些系统的模拟也遵守这些守恒定律,因为它们是如此基本;否则,模拟结果可能没有物理意义或可信。然而,目前的方法并非总是如此。在这个项目中,PI将开发和分析遵守这些守恒定律并保持相关物理特性的有限元方法。该项目的成功将导致新的计算方法和更好地了解目前的方法,为各种各样的科学应用。由于所提出的研究解决的具体应用具有很高的科学价值,这可能有重要的影响计算物理和engineering.The PI建议调查结构保持混合有限元方法的偏微分方程(PDE)包含局部对称性,不变量和守恒定律。在应用中,这些局部不变的几何结构通常具有重要的物理意义(例如,电磁学中的电荷守恒),因此期望设计出精确地而不是近似地保持这些结构的保守数值方法。混合方法为此提供了一个自然的框架,因为人们可以检查本地不变量,元素的元素,在其边界上的数值轨迹和通量。拟议的研究包括两个主要组成部分。(1)哈密顿偏微分方程,这是无处不在的物理应用,满足多辛守恒定律,这是密切相关的物理重要的互易现象,行波,色散关系,和分叉。PI将使用空间HDG半离散化和时空HDG方法,将他最近在用于空间离散化的多辛杂交不连续Galerkin(HDG)方法方面的联合工作扩展到时间演化问题。(2)虽然麦克斯韦方程组的时间演化自动保持了与电荷守恒相关的发散约束,但对于有限元离散化通常不是这样。初步结果表明,这可以解决使用一类混合方法,其中电荷守恒的意义上的数值电通量。PI建议通过分析麦克斯韦本征值问题的混合方法以及使用有限元外演算的杨-米尔斯理论的混合方法来扩展这一点。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hybridization and postprocessing in finite element exterior calculus
有限元外微积分中的混合和后处理
- DOI:10.1090/mcom/3743
- 发表时间:2023
- 期刊:
- 影响因子:2
- 作者:Awanou, Gerard;Fabien, Maurice;Guzmán, Johnny;Stern, Ari
- 通讯作者:Stern, Ari
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ari Stern其他文献
Hodge decomposition and the Shapley value of a cooperative game
- DOI:
10.1016/j.geb.2018.09.006 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:
- 作者:
Ari Stern;Alexander Tettenhorst - 通讯作者:
Alexander Tettenhorst
Ari Stern的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ari Stern', 18)}}的其他基金
Structure-Preserving Hybrid Finite Element Methods
保结构混合有限元方法
- 批准号:
2208551 - 财政年份:2022
- 资助金额:
$ 21.26万 - 项目类别:
Standard Grant
相似国自然基金
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A hybrid Deep Learning-assisted Finite Element technique to predict dynamic failure evolution in advanced ceramics (DeLFE)
用于预测先进陶瓷动态失效演化的混合深度学习辅助有限元技术 (DeLFE)
- 批准号:
EP/Y004671/1 - 财政年份:2024
- 资助金额:
$ 21.26万 - 项目类别:
Research Grant
Development of a Hybrid Stochastic Finite Element Method with Enhanced Versatility for Uncertainty Quantification
开发一种增强通用性的混合随机有限元方法,用于不确定性量化
- 批准号:
23K04012 - 财政年份:2023
- 资助金额:
$ 21.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure-Preserving Hybrid Finite Element Methods
保结构混合有限元方法
- 批准号:
2208551 - 财政年份:2022
- 资助金额:
$ 21.26万 - 项目类别:
Standard Grant
Hybrid Parallel Adaptive Finite Element Analysis and Design for High-Speed Microelectronic System Interconnections
高速微电子系统互连的混合并行自适应有限元分析与设计
- 批准号:
RGPIN-2022-04190 - 财政年份:2022
- 资助金额:
$ 21.26万 - 项目类别:
Discovery Grants Program - Individual
Fast Electro-Thermal Finite Element Analysis (FEA) for the Thermal Management of High-Power Density electrical machines in hybrid electric future avia
用于未来混合电动高功率密度电机热管理的快速电热有限元分析 (FEA)
- 批准号:
2777136 - 财政年份:2022
- 资助金额:
$ 21.26万 - 项目类别:
Studentship
A novel hybrid finite-discrete element modeling approach to assess the impact of drilling-induced core damage on laboratory properties of hard brittle rocks
一种新颖的混合有限离散元建模方法,用于评估钻井引起的岩心损伤对硬脆性岩石实验室特性的影响
- 批准号:
580759-2022 - 财政年份:2022
- 资助金额:
$ 21.26万 - 项目类别:
Alliance Grants
CRII: OAC: A Hybrid Finite Element and Molecular Dynamics Simulation Approach for Modeling Nanoparticle Transport in Human Vasculature
CRII:OAC:一种混合有限元和分子动力学模拟方法,用于模拟人体脉管系统中纳米颗粒的传输
- 批准号:
2326802 - 财政年份:2022
- 资助金额:
$ 21.26万 - 项目类别:
Standard Grant
Hybrid Parallel Adaptive Finite Element Analysis and Design for High-Speed Microelectronic System Interconnections
高速微电子系统互连的混合并行自适应有限元分析与设计
- 批准号:
RGPIN-2016-04891 - 财政年份:2021
- 资助金额:
$ 21.26万 - 项目类别:
Discovery Grants Program - Individual
Hybrid Parallel Adaptive Finite Element Analysis and Design for High-Speed Microelectronic System Interconnections
高速微电子系统互连的混合并行自适应有限元分析与设计
- 批准号:
RGPIN-2016-04891 - 财政年份:2020
- 资助金额:
$ 21.26万 - 项目类别:
Discovery Grants Program - Individual
A finite element model for the analysis of the nonlinear mechanical behavior of hybrid composite materials
用于分析混合复合材料非线性力学行为的有限元模型
- 批准号:
433734847 - 财政年份:2019
- 资助金额:
$ 21.26万 - 项目类别:
Research Grants