CRII: OAC: A Hybrid Finite Element and Molecular Dynamics Simulation Approach for Modeling Nanoparticle Transport in Human Vasculature
CRII:OAC:一种混合有限元和分子动力学模拟方法,用于模拟人体脉管系统中纳米颗粒的传输
基本信息
- 批准号:2326802
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Through nanomedicine significant methods are emerging to deliver drug molecules directly to diseased areas for cancer treatment. Targeted drug delivery is one of the most promising approaches which relies on nanoparticles (NPs) that carry and release drugs. The therapeutic efficacy of NP-based drug carriers is determined by the proper concentration of drug molecules at the lesion site. NPs need to be delivered directly to the diseased tissues while minimizing their uptake by other tissues, thereby reducing the potential harm to healthy tissue. Therefore, the design of these NPs and hence the efficacy of the targeted drug delivery could be significantly improved by understanding how the drugs carried by NPs are transported and dispersed in human body. This project proposes a set of computational tools to model and investigate the transport and dispersion of NPs in human vasculature. This, in turn, can provide better imaging sensitivity, therapeutic efficacy and lower toxicity of NP-based drug carriers. The multidisciplinary nature of the project also brings together concepts from biology, engineering and computer science to educate the next generation of computational biologists, scientists and engineers. This research, thus, aligns with the NSF mission to promote the progress of science and to advance the national health, prosperity and welfare. The technical objective of this project is to create a hybrid finite element and molecular dynamics computational approach for modeling NP transport and adhesion in human vasculature. The realistic geometry of vascular network and fluid dynamics of blood flow are accurately captured through the finite element model. The microscopic interactions between NPs and red blood cells within blood flow and adhesion of NPs to vessel wall are resolved through the molecular dynamics simulation. A robust and efficient coupling interface is built to couple the finite element and molecular dynamics solvers. Specifically, this project aims to 1) create a multiscale and multiphysics computational model for predicting the vascular dynamics of NPs under the influence of realistic geometrical and physiochemical features of human vasculature; 2) craft an interface coupling technique that enhances computational accuracy and predictability by coupling the finite element and molecular dynamics solvers; 3) build testsuits for multiscale and multiphysics simulations for coupled solution error and convergence analysis; and 4) advance the current cyberinfrastructure to accelerate the material design process and enrich the cyber-enabled materials design community. Such a computational method can be used to explore how the vascular dynamics of NPs will be affected by their size, shape, surface and stiffness properties, as well as complex geometry of human vasculature. The simulation results can further guide experimentalists to design NP-mediated drug delivery platforms that optimally accumulate within diseased tissue to provide better imaging sensitivity, therapeutic efficacy and lower toxicity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通过纳米医学,重要的方法正在出现,将药物分子直接输送到患病区域进行癌症治疗。 靶向给药是最有前途的方法之一,它依赖于携带和释放药物的纳米颗粒(NPs)。 基于NP的药物载体的治疗功效取决于药物分子在病变部位的适当浓度。 NP需要直接递送到患病组织,同时最大限度地减少其他组织对它们的吸收,从而减少对健康组织的潜在伤害。 因此,这些纳米颗粒的设计,从而靶向药物递送的功效可以显着提高通过了解纳米颗粒携带的药物是如何在人体内运输和分散。 本计画提出一套计算工具来模拟及研究奈米粒子在人体血管系统中的传输与分散。 这反过来可以提供基于NP的药物载体的更好的成像灵敏度、治疗功效和更低的毒性。 该项目的多学科性质还汇集了生物学,工程学和计算机科学的概念,以教育下一代计算生物学家,科学家和工程师。因此,这项研究符合NSF的使命,以促进科学的进步和促进国家的健康,繁荣和福利。本项目的技术目标是建立一种混合有限元和分子动力学计算方法,用于模拟NP在人体血管系统中的转运和粘附。 通过有限元模型精确地捕捉血管网络的真实几何形状和血流的流体动力学。 通过分子动力学模拟,解决了纳米粒子与血流中红细胞之间的微观相互作用以及纳米粒子与血管壁的粘附。 一个强大的和有效的耦合接口,建立耦合有限元和分子动力学求解器。 具体来说,该项目旨在1)创建一个多尺度和多物理场计算模型,用于预测在人体血管系统真实几何和物理化学特征的影响下NP的血管动力学; 2)制定一种接口耦合技术,通过耦合来提高计算准确性和可预测性有限元和分子动力学求解器; 3)为多尺度和多物理场模拟建立测试服,用于耦合解决方案误差和收敛分析; 4)推进当前的网络基础设施,以加速材料设计过程,丰富网络材料设计社区。 这种计算方法可以用于探索纳米颗粒的血管动力学将如何受到其尺寸、形状、表面和刚度特性以及人体脉管系统的复杂几何形状的影响。 模拟结果可以进一步指导实验人员设计NP介导的药物递送平台,这些药物在病变组织内最佳地积聚,以提供更好的成像灵敏度、治疗效果和更低的毒性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine learning-based prediction for single-cell mechanics
- DOI:10.1016/j.mechmat.2023.104631
- 发表时间:2023-03
- 期刊:
- 影响因子:3.9
- 作者:Danh-Truong Nguyen;Lei Tao;Huilin Ye;Ying Li
- 通讯作者:Danh-Truong Nguyen;Lei Tao;Huilin Ye;Ying Li
Computational investigation on lipid bilayer disruption induced by amphiphilic Janus nanoparticles: combined effect of Janus balance and charged lipid concentration
两亲性 Janus 纳米粒子诱导的脂质双层破坏的计算研究:Janus 平衡和带电脂质浓度的综合影响
- DOI:10.1039/d3nr00403a
- 发表时间:2023
- 期刊:
- 影响因子:6.7
- 作者:Nguyen, Danh;Wu, James;Corrigan, Patrick;Li, Ying
- 通讯作者:Li, Ying
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Li其他文献
High Temperature Proton Conductors Resarch and Application
高温质子导体的研究与应用
- DOI:
10.4028/www.scientific.net/amr.750-752.1219 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
H. Zhao;Y. Wu;Ying Li;C. Bi - 通讯作者:
C. Bi
Convolutional neural network to identify cylindrical vector beam modes
卷积神经网络识别圆柱矢量光束模式
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Lizhen Chen;Wenjie Xiong;Peipei Wang;Zebin Huang;Yanliang He;Junmin Liu;Huapeng Ye;Ying Li;Dianyuan Fan;Shuqing Chen - 通讯作者:
Shuqing Chen
The practical doping principles of tuning antiferromagnetic state in BiMn2O5 ceramics.
BiMn2O5 陶瓷中反铁磁态调节的实用掺杂原理。
- DOI:
10.1007/s00339-023-06390-x - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Wenlong Su;Guixin He;Xiaoxu Bao;Chunyan He;Ying Li;Lingding Zhang;Ying Zhang;Jiale Liu;Jiawei Chen;Jieyu Chen;YulongBai;Shifeng Zhao - 通讯作者:
Shifeng Zhao
Sound Velocities, Elasticity, and Mechanical Properties of Stoichiometric Submicron Polycrystalline delta-MoN at High Pressure
高压下化学计量亚微米多晶 delta-MoN 的声速、弹性和机械性能
- DOI:
10.1021/acs.inorgchem.1c00406 - 发表时间:
2021 - 期刊:
- 影响因子:4.6
- 作者:
Yongtao Zou;Ke Liu;Pei Wang;Daowei Wang;Mu Li;Ying Li;Leiming Fang;Hongbin Zhuo;Shuangchen Ruan;Cangtao Zhou;Yusheng Zhao - 通讯作者:
Yusheng Zhao
Microstructure analysis of sol-gel-derived nanocrystalline ITO thin films
溶胶-凝胶法纳米晶ITO薄膜的微观结构分析
- DOI:
- 发表时间:
- 期刊:
- 影响因子:1.7
- 作者:
Yang Ren;Gaoyang Zhao;Dichun Chen;Ying Li - 通讯作者:
Ying Li
Ying Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Li', 18)}}的其他基金
CLIMA/Collaborative Research: Discovery of Covalent Adaptable Networks for Sustainable Manufacturing and Recycling of Wind Turbine Blades
CLIMA/合作研究:发现用于风力涡轮机叶片可持续制造和回收的共价适应性网络
- 批准号:
2332276 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2313746 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
PFI-TT: Scalable Manufacturing of Novel Catalysts for Converting CO2 to Valuable Products
PFI-TT:可规模化生产将二氧化碳转化为有价值产品的新型催化剂
- 批准号:
2326072 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Collaborative Research: Interfacial Self-healing of Nanocomposite Hydrogels
合作研究:纳米复合水凝胶的界面自修复
- 批准号:
2314424 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2205007 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
CAREER: Machine Learned Coarse-grained Modeling for Mechanics of Thermoplastic Elastomers
职业:热塑性弹性体力学的机器学习粗粒度建模
- 批准号:
2323108 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: Using Anisotropic Surface Coating of Nanoparticles to Tune Their Antimicrobial Activity
合作研究:利用纳米颗粒的各向异性表面涂层来调节其抗菌活性
- 批准号:
2313754 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Collaborative Research: Using Anisotropic Surface Coating of Nanoparticles to Tune Their Antimicrobial Activity
合作研究:利用纳米颗粒的各向异性表面涂层来调节其抗菌活性
- 批准号:
2153894 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Unraveling Mechanics of High Strength and Low Stiffness in Polymer Nanocomposites through Integrated Molecular Modeling and Nanomechanical Experiments
通过集成分子建模和纳米力学实验揭示聚合物纳米复合材料的高强度和低刚度力学
- 批准号:
2316200 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Elucidating the interplay between two chromatin regulators HDA8 and ELP3 in dynamic control of primary and secondary metabolic networks
阐明两个染色质调节因子 HDA8 和 ELP3 在初级和次级代谢网络动态控制中的相互作用
- 批准号:
2123470 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
Z8-12:OH和Z8-14:OAc分别维持梨小食心虫和李小食心虫性诱剂特异性的分子基础
- 批准号:
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
亚硝酰钌配合物[Ru(OAc)(2mqn)2NO]的光异构反应机理研究
- 批准号:21603131
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
机械化学条件下Mn(OAc)3促进的自由基串联反应研究
- 批准号:21242013
- 批准年份:2012
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
OAC Core: Cost-Adaptive Monitoring and Real-Time Tuning at Function-Level
OAC核心:功能级成本自适应监控和实时调优
- 批准号:
2402542 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
OAC Core: OAC Core Projects: GPU Geometric Data Processing
OAC 核心:OAC 核心项目:GPU 几何数据处理
- 批准号:
2403239 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构化网格技术
- 批准号:
2348394 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty
CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架
- 批准号:
2348495 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
- 批准号:
2402947 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403313 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
- 批准号:
2414185 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant














{{item.name}}会员




