A finite element model for the analysis of the nonlinear mechanical behavior of hybrid composite materials

用于分析混合复合材料非线性力学行为的有限元模型

基本信息

项目摘要

The research project deals with a non-standard discretization method. It is based on the fundamental paradigm of scaling the boundary surfaces with respect to a center. It leads to a finite element mesh with star-convex elements that allow hanging nodes, reentrant corners and curved edges. For the resulting polygon or polyhedron-like structures, the corresponding element formulations are developed. In order to enable a general application, these are designed for geometrical and physically non-linear 2D and 3D problems. We are aiming for an element formulation, which combines the advantages of the finite element method and the geometrically exact description of the boundary geometry. The element allows for an arbitrary number of sides. Straight edges or plane surfaces are possible as well as curved edges or surfaces, which are described by e.g. non-uniform rational B splines. In combination with the fast Quadtree or Octree algorithm and a local refinement strategy, it leads to a recursive discretization method. Initially, it starts with the boundary representation of a solid and then automatically continues with a block partitioning of the structure. In this manner, internal interfaces originating from different materials or voids are resolved, and the curved boundary is embedded in the finite element mesh.At first, a Quadtree or Octree decomposition of the domain into star-convex subdomains or elements provides a rough initial discretization. Further mesh refinements are needed to reduce the approximation error of the stresses and displacements. There are two refinements options. One recursively applies Quadtree or Octree decomposition to create the next finer level of discretization. The other considers the parameterization on the element, where the refinement applies either in circumferential direction along the boundary or in radial direction. Note that this step may be completely restricted to a subdomain or the element under consideration. It is not necessary to refine neighboring elements due to so-called hanging nodes. Therefore, it is a local refinement, which can be applied in different ways. It is possible to introduce additional nodes at the boundary edges and/or in the interior of an element, or it is possible to increase the polynomial degree at element level. The different refinement strategies need to be evaluated based on meaningful criteria.The discretization concept with the embedded element formulation results in a general numerical finite element method, which is suitable for the analysis of heterogeneous materials with inclusions and voids. The aim of the project is to contribute to reliable and robust numerical analysis to meet the requirements for the design of modern hybrid composites.
本研究计画探讨一种非标准离散化方法。它基于相对于中心缩放边界表面的基本范例。它导致了一个有限元网格与星凸元素,允许悬挂节点,凹角和弯曲的边缘。对于由此产生的多边形或多面体状结构,相应的元素配方开发。为了实现一般应用,这些设计用于几何和物理非线性2D和3D问题。我们的目标是一个元素配方,它结合了有限元法的优点和边界几何形状的几何精确描述。该元素允许任意数量的边。直边或平面表面以及弯曲边或表面都是可能的,其通过例如非均匀有理B样条来描述。结合快速四叉树或八叉树算法和局部细化策略,得到一种递归离散化方法。最初,它从实体的边界表示开始,然后自动继续对结构进行块划分。通过这种方式,可以解决源自不同材料或空隙的内部界面,并将弯曲边界嵌入有限元网格中。首先,将域四叉树或八叉树分解为星凸子域或单元,提供粗略的初始离散化。为了减小应力和位移的近似误差,需要进一步细化网格。有两个改进选项。递归地应用四叉树或八叉树分解来创建下一个更精细的离散化级别。另一种考虑了单元的参数化,其中细化应用于沿边界的周向方向沿着或径向方向。请注意,此步骤可能完全限于考虑中的子域或元素。由于所谓的悬挂节点,没有必要细化相邻元素。因此,它是一个局部细化,可以以不同的方式应用。可以在边界边缘处和/或在元件的内部引入额外的节点,或者可以在元件级增加多项式次数。不同的细化策略需要根据有意义的标准进行评估。嵌入单元列式的离散化概念导致了一种通用的数值有限元方法,适用于分析含夹杂和空隙的非均匀材料。该项目的目的是有助于可靠和强大的数值分析,以满足现代混杂复合材料的设计要求。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Sven Klinkel其他文献

Professor Dr.-Ing. Sven Klinkel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Sven Klinkel', 18)}}的其他基金

A numerical model for the analysis and simulation of electro-active paper
电活性纸分析与模拟的数值模型
  • 批准号:
    393020662
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Real-Time Hybrid Simulation of Shape Memory Alloy Dampers
形状记忆合金阻尼器的实时混合仿真
  • 批准号:
    322268262
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
An adaptive FE²-model for the analysis of the non-linear, thermo-mechanically coupled behavior of fiber-matrix composites
用于分析纤维基复合材料的非线性热机械耦合行为的自适应 FE² 模型
  • 批准号:
    283581644
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Scaled boundary isogeometric analysis with advanced features for trimmed objects, higher order continuity, and structural dynamics
缩放边界等几何分析,具有修剪对象、高阶连续性和结构动力学的高级功能
  • 批准号:
    285973342
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Balanced approximation spaces and mixed variational principles to eliminate locking effects in isogeometric shell analysis
平衡逼近空间和混合变分原理消除等几何壳分析中的锁定效应
  • 批准号:
    266714483
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Using finite strain 3D-material models in beam and shell elements. An interface between arbitrary 3D-material laws and finite elements which include special stress conditions
在梁和壳单元中使用有限应变 3D 材料模型。
  • 批准号:
    5320194
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Polygonal Reissner-Mindlin shell element formulation
多边形 Reissner-Mindlin 壳单元公式
  • 批准号:
    529267576
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units
Coordination Funds
协调基金
  • 批准号:
    529252331
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units
Naturally grown timber elements as basis for load-bearing building structures - structural analysis and growth simulation
自然生长的木材元素作为承重建筑结构的基础 - 结构分析和生长模拟
  • 批准号:
    512769030
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
  • 批准号:
    52301178
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
毛竹MLE(mariner-like element)转座酶催化机理研究
  • 批准号:
    LZ19C160001
  • 批准年份:
    2018
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
静动态损伤问题的基面力元法及其在再生混凝土材料细观损伤分析中的应用
  • 批准号:
    11172015
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
CXCL16/CXCR6调控CIA发病的分子机制研究
  • 批准号:
    30772012
  • 批准年份:
    2007
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
Kallikrein 4(KLK4)受激素调控的机制和对激素非依赖前列腺癌生长影响的实验研究
  • 批准号:
    30571853
  • 批准年份:
    2005
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

Using paired CT/MRI images to create finite element model of metaphyseal fracture in young children
使用配对 CT/MRI 图像创建幼儿干骺端骨折有限元模型
  • 批准号:
    2883532
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Quantifying the relationship between intracortical remodeling, microdamage, and bone quality in a novel in vivo loading model
在新型体内负荷模型中量化皮质内重塑、微损伤和骨质量之间的关系
  • 批准号:
    478357
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Toward Patient-Specific Computational Modeling of Tricuspid Valve Repair in Hypoplastic Left Heart Syndrome
左心发育不全综合征三尖瓣修复的患者特异性计算模型
  • 批准号:
    10643122
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Role of SPECC1L cytoskeletal protein in palate elevation dynamics
SPECC1L 细胞骨架蛋白在上颚抬高动态中的作用
  • 批准号:
    10638817
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The interplay between active and passive mechanics in the aging bladder
老化膀胱中主动和被动力学之间的相互作用
  • 批准号:
    10827248
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Effects of bimagrumab on body composition, insulin sensitivity, and bone in adults with obesity
bimagrumab 对肥胖成人的身体成分、胰岛素敏感性和骨骼的影响
  • 批准号:
    10716254
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Patient-Specific Simulations to Guide Coronary Bifurcation Stenting
指导冠状动脉分叉支架置入的患者特异性模拟
  • 批准号:
    10810399
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Establishment of large-scale finite element electromagnetic field analysis using a high-precision human body model in a 5G environment
5G环境下高精度人体模型建立大规模有限元电磁场分析
  • 批准号:
    23K16893
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Linking Head Kinematics and Multi-Modal Imaging Using a Finite Element Head Model to Assess mTBI Risk Mitigation
使用有限元头部模型将头部运动学和多模态成像联系起来以评估 mTBI 风险缓解
  • 批准号:
    558260-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Developing branch stress microscopy for the mechanobiology of 3D morphogenesis and invasive diseases
开发用于 3D 形态发生和侵袭性疾病的机械生物学的分支应力显微镜
  • 批准号:
    10539600
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了