CAREER: Efficient Experimental Optimization for High-Performance Airborne Wind Energy Systems

职业:高性能机载风能系统的高效实验优化

基本信息

  • 批准号:
    1914495
  • 负责人:
  • 金额:
    $ 12.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-16 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

This Faculty Early Career Development (CAREER) grant will pioneer a first-in-world rapid prototyping system for experimentally optimizing the flight dynamics and control of airborne wind energy systems. Airborne wind energy systems replace towers with tethers and a lifting body, reducing deployment time and fixed infrastructure costs, and enabling turbines to take advantage of strong, high-altitude winds. Successful realization of these systems is projected to yield levelized costs of electricity below $0.25 per kW-h, providing cost-competitive energy solutions to remote communities, islands, military bases, and deep-water offshore locations. The synthesis of control systems to stabilize airborne wind energy systems in harsh atmospheric conditions remains a bottleneck for their widespread acceptance, further exacerbated by high prototype development costs. This research will reduce control system prototyping costs by multiple orders of magnitude, using 1/100-scale models that are 3D printed, tethered, and "flown" in a water channel laboratory test facility. The water channel provides an ideal mechanism for optimizing the control system design while replicating key dynamic properties of the full-scale system. Throughout the project, students will develop an industrial and small-business perspective through interactions with a leading early-stage airborne wind energy company. Outreach activities include the development of kite design modules for a high school engineering summer camp and co-design of an energy-rich science curriculum for an early college high school for economically disadvantaged students.Optimization of airborne wind energy flight performance represents a coupled plant and controller optimization problem, where experiments are indispensable but expensive at full-scale. This research addresses the plant/controller coupling and the necessity of experiments through the a unique framework that combines numerical optimization with lab-scale experiments on 3D printed models that are tethered and "flown" in a water channel. This water channel platform, which will be instrumented for closed-loop control of tethered systems, has been shown to yield provably similar dynamic performance to full-scale systems. In the proposed plant and controller optimization process, experimental data will be used to perform parameter identification and generate corrections to subsequent numerical optimization iterations. At the completion of each numerical optimization iteration, optimal design of experiments techniques will be used to determine a set of configurations to be tested, taking into account the cost of each reconfiguration. The research will focus on the derivation of convergence and efficiency results for the proposed algorithms, leveraging tools from system identification and optimal design of experiments. Furthermore, the optimization methods originating from this research will be validated on both a stationary and crosswind airborne wind energy system.
该学院早期职业发展(CAREER)资助将开创世界上第一个快速原型系统,用于实验优化飞行动力学和空中风能系统的控制。空中风能系统用系绳和提升体取代了塔架,减少了部署时间和固定基础设施成本,并使涡轮机能够利用高空强风。这些系统的成功实现预计将产生低于0.25美元每千瓦时的平准化电力成本,为偏远社区,岛屿,军事基地和深水离岸地点提供具有成本竞争力的能源解决方案。在恶劣的大气条件下稳定机载风能系统的控制系统的综合仍然是其广泛接受的瓶颈,进一步加剧了高原型开发成本。这项研究将使用1/100比例的模型将控制系统原型设计成本降低几个数量级,这些模型是在水槽实验室测试设施中3D打印,系留和“飞行”的。水通道为优化控制系统设计提供了理想的机制,同时复制了全尺寸系统的关键动态特性。在整个项目中,学生将通过与领先的早期空中风能公司的互动,发展工业和小企业的观点。推广活动包括为高中工程夏令营开发风筝设计模块,为经济困难的学生共同设计一个能源丰富的科学课程,为早期的大学高中。空中风能飞行性能的优化是一个耦合的工厂和控制器优化问题,实验是必不可少的,但在全尺寸昂贵。这项研究通过一个独特的框架解决了工厂/控制器耦合和实验的必要性,该框架将数值优化与实验室规模的实验结合在一起,对3D打印模型进行实验室规模的实验,这些模型被拴在水槽中并“飞行”。该水道平台将用于系绳系统的闭环控制,已被证明可产生与全尺寸系统相似的动态性能。在建议的工厂和控制器优化过程中,实验数据将用于执行参数识别,并生成后续数值优化迭代的校正。在每次数值优化迭代完成时,将使用最佳实验设计技术来确定一组待测试的配置,同时考虑到每次重新配置的成本。该研究将集中在所提出的算法的收敛性和效率结果的推导,利用系统识别和实验的最优设计的工具。此外,本研究所提出的最佳化方法,将在一固定式与迎风式的空中风力发电系统上进行验证。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Vermillion其他文献

Persistent Mission Planning of an Energy-Harvesting Autonomous Underwater Vehicle for Gulf Stream Characterization
用于湾流表征的能量采集自主水下航行器的持续任务规划
Experimental Validation of an Iterative Learning-Based Flight Trajectory Optimizer for an Underwater Kite
基于迭代学习的水下风筝飞行轨迹优化器的实验验证
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    James Reed;Kartik Naik;Andrew Abney;Dillon Herbert;Jacob Fine;Ashwin Vadlamannati;James Morris;Trip Taylor;Michael Muglia;Kenneth Granlund;M. Bryant;Christopher Vermillion
  • 通讯作者:
    Christopher Vermillion
Eclares: Energy-Aware Clarity-Driven Ergodic Search
Eclares:能量感知、清晰度驱动的遍历搜索
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaleb Ben Naveed;Devansh R. Agrawal;Christopher Vermillion;Dimitra Panagou
  • 通讯作者:
    Dimitra Panagou

Christopher Vermillion的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Vermillion', 18)}}的其他基金

Real-Time Control Co-Design for Reconfigurable Energy-Harvesting Systems
可重构能量收集系统的实时控制协同设计
  • 批准号:
    2321698
  • 财政年份:
    2023
  • 资助金额:
    $ 12.14万
  • 项目类别:
    Standard Grant
Persistent Mission Planning and Control for Renewably Powered Robotic Systems
可再生能源机器人系统的持续任务规划和控制
  • 批准号:
    2012103
  • 财政年份:
    2020
  • 资助金额:
    $ 12.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Workshop: Integrated Design of Active Dynamic Systems (IDADS); Champaign, Illinois
合作研究:研讨会:主动动态系统集成设计(IDADS);
  • 批准号:
    1935879
  • 财政年份:
    2019
  • 资助金额:
    $ 12.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-Scale, Multi-Rate Spatiotemporal Optimal Control with Application to Airborne Wind Energy Systems
合作研究:多尺度、多速率时空最优控制及其在机载风能系统中的应用
  • 批准号:
    1913726
  • 财政年份:
    2018
  • 资助金额:
    $ 12.14万
  • 项目类别:
    Standard Grant
Collaborative Research: An Economic Iterative Learning Control Framework with Application to Airborne Wind Energy Harvesting
合作研究:应用于机载风能采集的经济迭代学习控制框架
  • 批准号:
    1913735
  • 财政年份:
    2018
  • 资助金额:
    $ 12.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-Scale, Multi-Rate Spatiotemporal Optimal Control with Application to Airborne Wind Energy Systems
合作研究:多尺度、多速率时空最优控制及其在机载风能系统中的应用
  • 批准号:
    1711579
  • 财政年份:
    2017
  • 资助金额:
    $ 12.14万
  • 项目类别:
    Standard Grant
Collaborative Research: An Economic Iterative Learning Control Framework with Application to Airborne Wind Energy Harvesting
合作研究:应用于机载风能采集的经济迭代学习控制框架
  • 批准号:
    1727779
  • 财政年份:
    2017
  • 资助金额:
    $ 12.14万
  • 项目类别:
    Standard Grant
CAREER: Efficient Experimental Optimization for High-Performance Airborne Wind Energy Systems
职业:高性能机载风能系统的高效实验优化
  • 批准号:
    1453912
  • 财政年份:
    2015
  • 资助金额:
    $ 12.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Self-Adjusting Periodic Optimal Control with Application to Energy-Harvesting Flight
合作研究:自调节周期性最优控制及其在能量收集飞行中的应用
  • 批准号:
    1538369
  • 财政年份:
    2015
  • 资助金额:
    $ 12.14万
  • 项目类别:
    Standard Grant
Altitude Control for Optimal Performance of Tethered Wind Energy Systems
用于系留风能系统最佳性能的高度控制
  • 批准号:
    1437296
  • 财政年份:
    2014
  • 资助金额:
    $ 12.14万
  • 项目类别:
    Standard Grant

相似海外基金

Novel experimental and numerical techniques for efficient earthquake safety assessment of critical dam infrastructure
用于对关键大坝基础设施进行有效地震安全评估的新颖实验和数值技术
  • 批准号:
    RGPIN-2017-06891
  • 财政年份:
    2022
  • 资助金额:
    $ 12.14万
  • 项目类别:
    Discovery Grants Program - Individual
Experimental Study, Modelling and Design of High-Temperature Ground Thermal Energy Storage for Achieving Energy Efficient Building Energy Systems
实现节能建筑能源系统的高温地面热能储存的实验研究、建模和设计
  • 批准号:
    RGPIN-2017-04688
  • 财政年份:
    2022
  • 资助金额:
    $ 12.14万
  • 项目类别:
    Discovery Grants Program - Individual
Experimental Study, Modelling and Design of High-Temperature Ground Thermal Energy Storage for Achieving Energy Efficient Building Energy Systems
实现节能建筑能源系统的高温地面热能储存的实验研究、建模和设计
  • 批准号:
    RGPIN-2017-04688
  • 财政年份:
    2021
  • 资助金额:
    $ 12.14万
  • 项目类别:
    Discovery Grants Program - Individual
Novel experimental and numerical techniques for efficient earthquake safety assessment of critical dam infrastructure
用于对关键大坝基础设施进行有效地震安全评估的新颖实验和数值技术
  • 批准号:
    RGPIN-2017-06891
  • 财政年份:
    2021
  • 资助金额:
    $ 12.14万
  • 项目类别:
    Discovery Grants Program - Individual
Experimental Study, Modelling and Design of High-Temperature Ground Thermal Energy Storage for Achieving Energy Efficient Building Energy Systems
实现节能建筑能源系统的高温地面热能储存的实验研究、建模和设计
  • 批准号:
    RGPIN-2017-04688
  • 财政年份:
    2020
  • 资助金额:
    $ 12.14万
  • 项目类别:
    Discovery Grants Program - Individual
Novel experimental and numerical techniques for efficient earthquake safety assessment of critical dam infrastructure
用于对关键大坝基础设施进行有效地震安全评估的新颖实验和数值技术
  • 批准号:
    RGPIN-2017-06891
  • 财政年份:
    2020
  • 资助金额:
    $ 12.14万
  • 项目类别:
    Discovery Grants Program - Individual
Experimental Study on Efficient Seismic Retrofitting using Ductile Knee Steel Braces for Timber Frame Joints
木框架节点延性膝钢支撑高效抗震改造试验研究
  • 批准号:
    19K15081
  • 财政年份:
    2019
  • 资助金额:
    $ 12.14万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Experimental Study, Modelling and Design of High-Temperature Ground Thermal Energy Storage for Achieving Energy Efficient Building Energy Systems
实现节能建筑能源系统的高温地面热能储存的实验研究、建模和设计
  • 批准号:
    RGPIN-2017-04688
  • 财政年份:
    2019
  • 资助金额:
    $ 12.14万
  • 项目类别:
    Discovery Grants Program - Individual
Novel experimental and numerical techniques for efficient earthquake safety assessment of critical dam infrastructure
用于对关键大坝基础设施进行有效地震安全评估的新颖实验和数值技术
  • 批准号:
    RGPIN-2017-06891
  • 财政年份:
    2019
  • 资助金额:
    $ 12.14万
  • 项目类别:
    Discovery Grants Program - Individual
Experimental Study, Modelling and Design of High-Temperature Ground Thermal Energy Storage for Achieving Energy Efficient Building Energy Systems
实现节能建筑能源系统的高温地面热能储存的实验研究、建模和设计
  • 批准号:
    RGPIN-2017-04688
  • 财政年份:
    2018
  • 资助金额:
    $ 12.14万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了