Real-Time Control Co-Design for Reconfigurable Energy-Harvesting Systems
可重构能量收集系统的实时控制协同设计
基本信息
- 批准号:2321698
- 负责人:
- 金额:$ 44.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This grant will fund research that enables renewable energy generation systems, such as wind turbines and kites, to operate optimally over a wide range of environmental conditions, thereby promoting the progress of science and advancing the national prosperity. Environmental variability poses operational challenges for energy-harvesting systems that can be addressed using real-time reconfigurability: simultaneous, on-the-fly changes to both the physical mechanism (plant) and the system control to ensure sustained high efficiency. Offline design methodologies can select optimal plant and control parameters for fixed conditions. No such methodology exists, however, for real-time operation in response to environmental variability and uncertainty, due to critical differences in time scale and effort required to modify plant parameters and control parameters, respectively. This project will fill this knowledge gap by developing an innovative algorithmic framework that accounts for such differences in real-time operation and will further quantify the computational requirements to make real-time reconfigurability worth additional costs and complexity. The PI will leverage engagement with the International Energy Agency Task on Airborne Wind Energy to organize annual workshops on the use of reconfigurable energy-harvesting-system models and open-source software tools created in this project. Student engagement with renewable energy technology will be promoted by implementing a “Physics of Kites” workshop in existing K-12 programming.This research aims to develop the foundations of a receding horizon co-design framework for real-time plant reconfigurability while also addressing fundamental distinctions between plant and control parameters. It accomplishes this outcome by fusing notions from nested co-design and multi-rate hierarchical model predictive control, addressing critical knowledge gaps that arise due to the simultaneous need to (i) consider an economic (rather than tracking) formulation at both levels of the hierarchy, (ii) incorporate surrogate models for tractability, and (iii) consider environmental stochasticity. Specifically, a multi-rate architecture will be investigated whereby a low-order surrogate model is used by the upper-level plant optimization to approximately capture the anticipated behavior of the lower-level control system optimization. An interconnected error system model and small gain framework will be used to address questions of convergence and efficiency under different rates of environmental parameter variation. Finally, recursive Gaussian Process modeling will be used to characterize environmental uncertainty, while reformulating deterministic objective functions into statistical ones, introducing chance constraints, and assessing theoretical properties in a probabilistic sense. The framework will be evaluated through an extensive simulation and scaled experimental validation campaign on an energy-harvesting underwater kite with real-time morphing capability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项赠款将资助能够在各种环境条件下最佳运营的可再生能源产生系统(例如风力涡轮机和风筝)的研究,从而促进科学的进步并促进国家繁荣。环境变异性对能源收获系统构成了运营挑战,可以使用实时重构性来解决:简单的,即时更改物理机制(工厂)和系统控制,以确保持续的高效率。离线设计方法可以为固定条件选择最佳植物和控制参数。但是,由于分别修改植物参数和控制参数所需的时间尺度和努力,因此,对于响应环境变异性和不确定性而进行实时操作尚无这种方法。该项目将通过开发一个创新的算法框架来填补这一知识差距,该算法框架构成了实时操作的这种差异,并将进一步量化计算要求以使实时可重构性值得额外的成本和复杂性。 PI将利用与国际能源机构有关机载风能的任务的参与,以组织该项目中创建的可重新配置的能源收获系统模型和开源软件工具的年度研讨会。通过在现有的K-12编程中实施“风筝物理”研讨会,将促进学生参与可再生能源技术的参与。本研究旨在开发用于实时植物重构植物可重构框架的退化地平线共同设计框架的基础,同时还解决植物和控制参数之间的基本区别。它通过融合嵌套的共同设计和多速率层次模型预测控制的注释来实现这一结果,从而解决了由于同时需要(i)考虑在两个级别的层次级别上制定的经济(而不是跟踪)引起的关键知识差距,(ii)将替代模型纳入了tractabority和(iiiiii)的环境,并考虑了环境的构图。具体而言,将研究多速率体系结构,从而将低阶替代模型由高级工厂优化使用,以近似捕获下层控制系统优化的预期行为。互连的错误系统模型和少量增益框架将用于解决不同环境参数变化速率下的收敛和效率问题。最后,递归高斯过程建模将用于表征环境不确定性,同时将确定性的目标功能改革为统计函数,引入机会限制,并以概率意义评估理论特性。该框架将通过广泛的模拟和扩展的实验验证活动来评估,并具有实时变形能力的能源收获水下风筝。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛影响的评估标准通过评估来评估的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Vermillion其他文献
Persistent Mission Planning of an Energy-Harvesting Autonomous Underwater Vehicle for Gulf Stream Characterization
用于湾流表征的能量采集自主水下航行器的持续任务规划
- DOI:
10.1109/tcst.2023.3328105 - 发表时间:
2024 - 期刊:
- 影响因子:4.8
- 作者:
Benjamin Haydon;James Reed;Christopher Vermillion - 通讯作者:
Christopher Vermillion
Eclares: Energy-Aware Clarity-Driven Ergodic Search
Eclares:能量感知、清晰度驱动的遍历搜索
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kaleb Ben Naveed;Devansh R. Agrawal;Christopher Vermillion;Dimitra Panagou - 通讯作者:
Dimitra Panagou
Experimental Validation of an Iterative Learning-Based Flight Trajectory Optimizer for an Underwater Kite
基于迭代学习的水下风筝飞行轨迹优化器的实验验证
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.8
- 作者:
James Reed;Kartik Naik;Andrew Abney;Dillon Herbert;Jacob Fine;Ashwin Vadlamannati;James Morris;Trip Taylor;Michael Muglia;Kenneth Granlund;M. Bryant;Christopher Vermillion - 通讯作者:
Christopher Vermillion
Christopher Vermillion的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Vermillion', 18)}}的其他基金
Persistent Mission Planning and Control for Renewably Powered Robotic Systems
可再生能源机器人系统的持续任务规划和控制
- 批准号:
2012103 - 财政年份:2020
- 资助金额:
$ 44.81万 - 项目类别:
Standard Grant
Collaborative Research: Workshop: Integrated Design of Active Dynamic Systems (IDADS); Champaign, Illinois
合作研究:研讨会:主动动态系统集成设计(IDADS);
- 批准号:
1935879 - 财政年份:2019
- 资助金额:
$ 44.81万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Scale, Multi-Rate Spatiotemporal Optimal Control with Application to Airborne Wind Energy Systems
合作研究:多尺度、多速率时空最优控制及其在机载风能系统中的应用
- 批准号:
1913726 - 财政年份:2018
- 资助金额:
$ 44.81万 - 项目类别:
Standard Grant
Collaborative Research: An Economic Iterative Learning Control Framework with Application to Airborne Wind Energy Harvesting
合作研究:应用于机载风能采集的经济迭代学习控制框架
- 批准号:
1913735 - 财政年份:2018
- 资助金额:
$ 44.81万 - 项目类别:
Standard Grant
CAREER: Efficient Experimental Optimization for High-Performance Airborne Wind Energy Systems
职业:高性能机载风能系统的高效实验优化
- 批准号:
1914495 - 财政年份:2018
- 资助金额:
$ 44.81万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Scale, Multi-Rate Spatiotemporal Optimal Control with Application to Airborne Wind Energy Systems
合作研究:多尺度、多速率时空最优控制及其在机载风能系统中的应用
- 批准号:
1711579 - 财政年份:2017
- 资助金额:
$ 44.81万 - 项目类别:
Standard Grant
Collaborative Research: An Economic Iterative Learning Control Framework with Application to Airborne Wind Energy Harvesting
合作研究:应用于机载风能采集的经济迭代学习控制框架
- 批准号:
1727779 - 财政年份:2017
- 资助金额:
$ 44.81万 - 项目类别:
Standard Grant
CAREER: Efficient Experimental Optimization for High-Performance Airborne Wind Energy Systems
职业:高性能机载风能系统的高效实验优化
- 批准号:
1453912 - 财政年份:2015
- 资助金额:
$ 44.81万 - 项目类别:
Standard Grant
Collaborative Research: Self-Adjusting Periodic Optimal Control with Application to Energy-Harvesting Flight
合作研究:自调节周期性最优控制及其在能量收集飞行中的应用
- 批准号:
1538369 - 财政年份:2015
- 资助金额:
$ 44.81万 - 项目类别:
Standard Grant
Altitude Control for Optimal Performance of Tethered Wind Energy Systems
用于系留风能系统最佳性能的高度控制
- 批准号:
1437296 - 财政年份:2014
- 资助金额:
$ 44.81万 - 项目类别:
Standard Grant
相似国自然基金
模型与数据双驱动的新能源电力系统电压稳定多时间尺度优化控制方法研究
- 批准号:52377096
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于输出反馈的有限时间主动一体化抗干扰控制理论及应用
- 批准号:62303148
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于指定时间包含控制的风-光-储系统频率、电压一体化控制方案研究
- 批准号:52377074
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
受扰合作竞争多智能体系统的预设时间协调控制研究
- 批准号:62303360
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
部分可观测连续时间马氏决策过程若干风险准则的最优控制问题研究
- 批准号:12361091
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
相似海外基金
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
- 批准号:
2423820 - 财政年份:2024
- 资助金额:
$ 44.81万 - 项目类别:
Standard Grant
CAREER: Real-time control of elementary catalytic steps: Controlling total vs partial electrocatalytic oxidation of alkanes and olefins
职业:实时控制基本催化步骤:控制烷烃和烯烃的全部与部分电催化氧化
- 批准号:
2338627 - 财政年份:2024
- 资助金额:
$ 44.81万 - 项目类别:
Continuing Grant
機械学習のアプローチによるPatient-based Real-time Quality Controlの開発
使用机器学习方法开发基于患者的实时质量控制
- 批准号:
24K10577 - 财政年份:2024
- 资助金额:
$ 44.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Activating lazy stormwater wetlands through real time monitoring & control
通过实时监控激活懒惰的雨水湿地
- 批准号:
LP210200490 - 财政年份:2023
- 资助金额:
$ 44.81万 - 项目类别:
Linkage Projects
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
- 批准号:
2312978 - 财政年份:2023
- 资助金额:
$ 44.81万 - 项目类别:
Standard Grant