Collaborative Research: Self-Adjusting Periodic Optimal Control with Application to Energy-Harvesting Flight
合作研究:自调节周期性最优控制及其在能量收集飞行中的应用
基本信息
- 批准号:1538369
- 负责人:
- 金额:$ 11.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For many dynamic systems, optimal periodic operation provides superior performance to the best possible constant input. For example, compared to stationary flight, airborne wind energy systems can achieve higher apparent wind speed -- and generate significantly more electricity -- by flying in circular or figure-8 orbits. However these results may be sensitive to uncertainty. For example, the performance of a periodic energy harvesting trajectory designed for a particular flight condition may degrade rapidly when wind speed changes. Thus the overarching goal of this project is to enable dynamic controllers that rapidly adjust their periodic operation, in order to continue to provide near-optimal performance despite changing conditions. The application to airborne wind energy systems, which can access wind streams with reliably high speeds and moderate air density, generate electricity more efficiently and more reliably than stationary systems, thus benefiting society through lower power costs and improved energy security. Moreover, the fundamental tools to be created in this project will be applicable to many other important problems, including recurrent drug-delivery scheduling for chronic disease treatment. Existing results on periodic optimal control focus on offline optimization. Very little is known about the following fundamental challenges: (i) adaptation to unknown plant dynamics, (ii) achievement of periodic optimality in a robust and stable manner, and (iii) simultaneous optimization of both the time period and shape of the periodic trajectory. This project addresses these challenges, thereby furnishing a novel framework for robust online periodic control. Two distinct approaches will be pursued for online optimization of periodic control trajectories in the presence of parametric uncertainties, namely a novel implementation of extremum-seeking methods, and an indirect adaptive control algorithm. The closed-loop system stability will be analyzed using Floquet theory. Performance will be evaluated in simulations of a benchmark drug delivery problem and an energy-harvesting flight problem. Finally, effectiveness for control of energy harvesting flight will be validated experimentally.
对于许多动态系统,最优周期运行提供了比最佳恒定输入更优越的性能。例如,与静止飞行相比,机载风能系统可以实现更高的表观风速,并通过圆形或8字形轨道飞行产生显著更多的电力。然而,这些结果可能对不确定性很敏感。例如,当风速变化时,为特定飞行条件设计的周期性能量收集轨迹的性能可能会迅速下降。因此,该项目的首要目标是使动态控制器能够快速调整其周期性操作,以便在不断变化的条件下继续提供接近最佳的性能。应用于机载风能系统,能够以可靠的高速和中等空气密度获得风流,比固定系统更高效、更可靠地发电,从而通过更低的电力成本和更好的能源安全造福社会。此外,该项目将创建的基本工具将适用于许多其他重要问题,包括慢性病治疗的经常性药物输送计划。已有的周期最优控制研究成果主要集中在离线优化方面。人们对以下基本挑战知之甚少:(I)适应未知的植物动态,(Ii)以稳健和稳定的方式实现周期最优,以及(Iii)同时优化周期轨迹的时间周期和形状。该项目解决了这些挑战,从而为稳健的在线周期控制提供了一个新的框架。在存在参数不确定性的情况下,将寻求两种不同的方法来在线优化周期控制轨迹,即一种新的极值搜索方法的实现,以及一种间接自适应控制算法。利用弗洛奎特理论对闭环系统的稳定性进行分析。性能将在基准药物输送问题和能量收集飞行问题的模拟中进行评估。最后,对能量收集飞行控制的有效性进行了实验验证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Vermillion其他文献
Persistent Mission Planning of an Energy-Harvesting Autonomous Underwater Vehicle for Gulf Stream Characterization
用于湾流表征的能量采集自主水下航行器的持续任务规划
- DOI:
10.1109/tcst.2023.3328105 - 发表时间:
2024 - 期刊:
- 影响因子:4.8
- 作者:
Benjamin Haydon;James Reed;Christopher Vermillion - 通讯作者:
Christopher Vermillion
Experimental Validation of an Iterative Learning-Based Flight Trajectory Optimizer for an Underwater Kite
基于迭代学习的水下风筝飞行轨迹优化器的实验验证
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.8
- 作者:
James Reed;Kartik Naik;Andrew Abney;Dillon Herbert;Jacob Fine;Ashwin Vadlamannati;James Morris;Trip Taylor;Michael Muglia;Kenneth Granlund;M. Bryant;Christopher Vermillion - 通讯作者:
Christopher Vermillion
Eclares: Energy-Aware Clarity-Driven Ergodic Search
Eclares:能量感知、清晰度驱动的遍历搜索
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kaleb Ben Naveed;Devansh R. Agrawal;Christopher Vermillion;Dimitra Panagou - 通讯作者:
Dimitra Panagou
Christopher Vermillion的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Vermillion', 18)}}的其他基金
Real-Time Control Co-Design for Reconfigurable Energy-Harvesting Systems
可重构能量收集系统的实时控制协同设计
- 批准号:
2321698 - 财政年份:2023
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
Persistent Mission Planning and Control for Renewably Powered Robotic Systems
可再生能源机器人系统的持续任务规划和控制
- 批准号:
2012103 - 财政年份:2020
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
Collaborative Research: Workshop: Integrated Design of Active Dynamic Systems (IDADS); Champaign, Illinois
合作研究:研讨会:主动动态系统集成设计(IDADS);
- 批准号:
1935879 - 财政年份:2019
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Scale, Multi-Rate Spatiotemporal Optimal Control with Application to Airborne Wind Energy Systems
合作研究:多尺度、多速率时空最优控制及其在机载风能系统中的应用
- 批准号:
1913726 - 财政年份:2018
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
Collaborative Research: An Economic Iterative Learning Control Framework with Application to Airborne Wind Energy Harvesting
合作研究:应用于机载风能采集的经济迭代学习控制框架
- 批准号:
1913735 - 财政年份:2018
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
CAREER: Efficient Experimental Optimization for High-Performance Airborne Wind Energy Systems
职业:高性能机载风能系统的高效实验优化
- 批准号:
1914495 - 财政年份:2018
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Scale, Multi-Rate Spatiotemporal Optimal Control with Application to Airborne Wind Energy Systems
合作研究:多尺度、多速率时空最优控制及其在机载风能系统中的应用
- 批准号:
1711579 - 财政年份:2017
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
Collaborative Research: An Economic Iterative Learning Control Framework with Application to Airborne Wind Energy Harvesting
合作研究:应用于机载风能采集的经济迭代学习控制框架
- 批准号:
1727779 - 财政年份:2017
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
CAREER: Efficient Experimental Optimization for High-Performance Airborne Wind Energy Systems
职业:高性能机载风能系统的高效实验优化
- 批准号:
1453912 - 财政年份:2015
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
Altitude Control for Optimal Performance of Tethered Wind Energy Systems
用于系留风能系统最佳性能的高度控制
- 批准号:
1437296 - 财政年份:2014
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329909 - 财政年份:2024
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
Collaborative Research: Self-powered Electrochemical Actuators toward Untethered Soft Mobile Robots
合作研究:用于无束缚软移动机器人的自供电电化学执行器
- 批准号:
2329674 - 财政年份:2023
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
Collaborative Research: Self-powered Electrochemical Actuators toward Untethered Soft Mobile Robots
合作研究:用于无束缚软移动机器人的自供电电化学执行器
- 批准号:
2329675 - 财政年份:2023
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Nanoparticle Self-assembly into Laser/Powder-based Additive Manufacturing of Multimodal Metallic Materials
合作研究:将纳米粒子自组装集成到多模态金属材料的激光/粉末增材制造中
- 批准号:
2231077 - 财政年份:2023
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
- 批准号:
2305882 - 财政年份:2023
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Self-Driving Continuous Fuzzing
协作研究:SaTC:核心:小型:自驱动连续模糊测试
- 批准号:
2247880 - 财政年份:2023
- 资助金额:
$ 11.38万 - 项目类别:
Continuing Grant
Collaborative Research: Using a Self-Guided Online Intervention to Address Student Fear of Negative Evaluation in Active Learning Undergraduate Biology Courses
合作研究:利用自我引导的在线干预来解决学生在主动学习本科生物学课程中对负面评价的恐惧
- 批准号:
2409880 - 财政年份:2023
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type I: A User-Interactive Approach to Water Management for Sustainable Data Centers: From Water Efficiency to Self-Sufficiency
合作研究:DESC:类型 I:可持续数据中心水资源管理的用户交互方法:从用水效率到自给自足
- 批准号:
2324916 - 财政年份:2023
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant














{{item.name}}会员




