Persistent Mission Planning and Control for Renewably Powered Robotic Systems
可再生能源机器人系统的持续任务规划和控制
基本信息
- 批准号:2012103
- 负责人:
- 金额:$ 36.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research is to pioneer new techniques for the mission planning and control of robotic systems that derive their propulsive energy either solely or primarily from renewable resources. Examples of renewably powered robotic systems include tumbleweed rovers for remote terrestrial exploration, solar powered aircraft for aerial observation, and sailing drones for oceanographic surface exploration. By relying on renewable resources for propulsion, such systems can explore hostile and remote regions that cannot be explored through traditional mobile robots due to range limitations, including the surfaces of distant planets, deep waters of the ocean, and the Arctic region. This research effort will focus on the creation and validation of fundamental tools for controlling renewably powered systems through a propulsive resource that varies stochastically in space and time, thereby necessitating a fundamentally new set of control tools relative to traditional mobile robots. The theoretical results from the research will be validated on a small fleet of sailing drones, to be deployed in inland waters. The research effort will be complemented with educational and outreach opportunities involving Autonomous Marine Systems, Inc., the Carolina Sailing Club, and North Carolina State University.Traditional mobile robotic systems can typically be characterized by very limited range but relatively predictable mobility, wherein the reachable domain of the robotic system (or team of robotic systems) can be characterized with a high degree of certainty at any given time. This research fundamentally reverses that paradigm, focusing on robotic systems with unlimited range but stochastic mobility. Due to the stochastic, spatiotemporal variation in the renewable resource, the application of traditional energy-aware control techniques on such systems will typically result in either ineffective or extremely conservative mission planning strategies. To address this challenge, this research project will pursue a hierarchical mission planning and control framework in which an upper-level mission planner prescribes preferred exploration directions based on statistical characterizations of the propulsive resource, and lower-level dynamic mobility optimizers will maximize expected mobility along preferred directions, taking into account the dynamics of each agent and the stochastic resource model. Gaussian Process modeling will be used to characterize the spatiotemporally evolving resource. Polynomial chaos approximations and stochastic response surface methods will be used to facilitate a receding horizon optimization of search directions at the upper level, whereas stochastic dynamic programming results will be used to extract probabilistically time-optimal waypoint following algorithms at the lower level. Theoretical performance limits will be analyzed in the context of statistical regret bounds. Mission planning and control algorithms will be validated in two settings: (i) a small fleet of instrumented sailing drones to be tested in inland waters and (ii) a larger-scale simulation study wherein the goal of the sailing drones is Gulf Stream resource assessment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究的目的是为机器人系统的任务计划和控制提供新技术,这些技术仅来自或主要来自可再生资源。更新动力的机器人系统的示例包括用于远程陆地勘探的滚滚滚动漫游者,太阳能飞机用于航空观察以及用于海洋表面勘探的帆船无人机。通过依靠可再生资源的推进资源,由于范围限制,这些系统可以通过传统的移动机器人探索敌对和远程区域,包括遥远的行星,海洋深水和北极地区。这项研究工作将集中于创建和验证基本工具,以通过在空间和时间上随机变化的推进资源来控制更新动力的系统,从而需要相对于传统移动机器人提供根本上新的控制工具。该研究的理论结果将在一小架帆船无人机舰队中进行验证,该帆船将在内陆水域部署。研究工作将与涉及自动海洋系统,Inc.,卡罗来纳州航行俱乐部和北卡罗来纳州立大学的教育和外展机会补充。传统的移动机器人系统通常可以以非常有限的范围但相对可预测的范围来表征,但相对可预测的范围,其中机器人系统的可及时(或机器人系统的触手可及的范围)都可以在任何一定程度上都具有一定程度的特征。这项研究从根本上扭转了范式,重点是具有无限范围但随机迁移率的机器人系统。由于可再生资源的随机,时空变化,传统能源感知控制技术在此类系统上的应用通常会导致无效或非常保守的任务计划策略。为了应对这一挑战,该研究项目将追求一个等级任务计划和控制框架,在该框架中,高级任务计划者根据推进资源的统计特征规定了首选的勘探方向,而下层动态移动性优化器将最大程度地沿着优选方向提高预期的移动性。高斯工艺建模将用于表征时空发展的资源。多项式混乱近似值和随机响应表面方法将用于促进上层搜索方向的恢复范围优化,而随机动态编程结果将用于提取在较低级别的算法之后概率地提取概率的时间优势。理论绩效限制将在统计遗憾范围的背景下进行分析。任务计划和控制算法将在两种情况下进行验证:(i)在内陆水域进行测试的一小批帆船无人机和(ii)一项较大的模拟研究,其中帆船无人机的目标是海湾资源评估的目标。这是NSF的法定任务,反映了值得通过的Intelliqu and Intelliqu and Infectiac and Infectiac and Infectiac and Infectiac and Infectiac and Infectiac and Infectiac and Intelliqu and Infectiac and Infectial。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coverage-Maximizing Solar-Powered Autonomous Surface Vehicle Control for Persistent Gulf Stream Observation
覆盖范围最大化的太阳能自主地面车辆控制,用于持续的湾流观测
- DOI:10.23919/acc53348.2022.9867746
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Govindarajan, Kavin;Haydon, Ben;Mishra, Kirti;Vermillion, Chris
- 通讯作者:Vermillion, Chris
Dynamic Coverage Meets Regret: Unifying Two Control Performance Measures for Mobile Agents in Spatiotemporally Varying Environments
动态覆盖遇到遗憾:在时空变化的环境中统一移动代理的两种控制性能测量
- DOI:10.1109/cdc45484.2021.9682826
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Haydon, Ben;Mishra, Kirti D.;Keyantuo, Patrick;Panagou, Dimitra;Chow, Fotini;Moura, Scott;Vermillion, Chris
- 通讯作者:Vermillion, Chris
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Vermillion其他文献
Persistent Mission Planning of an Energy-Harvesting Autonomous Underwater Vehicle for Gulf Stream Characterization
用于湾流表征的能量采集自主水下航行器的持续任务规划
- DOI:
10.1109/tcst.2023.3328105 - 发表时间:
2024 - 期刊:
- 影响因子:4.8
- 作者:
Benjamin Haydon;James Reed;Christopher Vermillion - 通讯作者:
Christopher Vermillion
Eclares: Energy-Aware Clarity-Driven Ergodic Search
Eclares:能量感知、清晰度驱动的遍历搜索
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kaleb Ben Naveed;Devansh R. Agrawal;Christopher Vermillion;Dimitra Panagou - 通讯作者:
Dimitra Panagou
Experimental Validation of an Iterative Learning-Based Flight Trajectory Optimizer for an Underwater Kite
基于迭代学习的水下风筝飞行轨迹优化器的实验验证
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.8
- 作者:
James Reed;Kartik Naik;Andrew Abney;Dillon Herbert;Jacob Fine;Ashwin Vadlamannati;James Morris;Trip Taylor;Michael Muglia;Kenneth Granlund;M. Bryant;Christopher Vermillion - 通讯作者:
Christopher Vermillion
Christopher Vermillion的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Vermillion', 18)}}的其他基金
Real-Time Control Co-Design for Reconfigurable Energy-Harvesting Systems
可重构能量收集系统的实时控制协同设计
- 批准号:
2321698 - 财政年份:2023
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
Collaborative Research: Workshop: Integrated Design of Active Dynamic Systems (IDADS); Champaign, Illinois
合作研究:研讨会:主动动态系统集成设计(IDADS);
- 批准号:
1935879 - 财政年份:2019
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Scale, Multi-Rate Spatiotemporal Optimal Control with Application to Airborne Wind Energy Systems
合作研究:多尺度、多速率时空最优控制及其在机载风能系统中的应用
- 批准号:
1913726 - 财政年份:2018
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
Collaborative Research: An Economic Iterative Learning Control Framework with Application to Airborne Wind Energy Harvesting
合作研究:应用于机载风能采集的经济迭代学习控制框架
- 批准号:
1913735 - 财政年份:2018
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
CAREER: Efficient Experimental Optimization for High-Performance Airborne Wind Energy Systems
职业:高性能机载风能系统的高效实验优化
- 批准号:
1914495 - 财政年份:2018
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Scale, Multi-Rate Spatiotemporal Optimal Control with Application to Airborne Wind Energy Systems
合作研究:多尺度、多速率时空最优控制及其在机载风能系统中的应用
- 批准号:
1711579 - 财政年份:2017
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
Collaborative Research: An Economic Iterative Learning Control Framework with Application to Airborne Wind Energy Harvesting
合作研究:应用于机载风能采集的经济迭代学习控制框架
- 批准号:
1727779 - 财政年份:2017
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
CAREER: Efficient Experimental Optimization for High-Performance Airborne Wind Energy Systems
职业:高性能机载风能系统的高效实验优化
- 批准号:
1453912 - 财政年份:2015
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
Collaborative Research: Self-Adjusting Periodic Optimal Control with Application to Energy-Harvesting Flight
合作研究:自调节周期性最优控制及其在能量收集飞行中的应用
- 批准号:
1538369 - 财政年份:2015
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
Altitude Control for Optimal Performance of Tethered Wind Energy Systems
用于系留风能系统最佳性能的高度控制
- 批准号:
1437296 - 财政年份:2014
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
相似国自然基金
创新使命对数字产品创新的驱动机制研究:意义建构视角
- 批准号:72302084
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不忘初心:职业使命感的内涵结构、动态变化及激发机制研究
- 批准号:72272117
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
组织混合性、使命偏离与社会企业扩张路径研究
- 批准号:72202038
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
组织混合性、使命偏离与社会企业扩张路径研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社会企业使命漂移机制研究:基于制度复杂性的视角
- 批准号:72072188
- 批准年份:2020
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
2023 Focus Meeting of the Pacific Basin Consortium for Environment and Health
2023年太平洋盆地环境与健康联盟焦点会议
- 批准号:
10753652 - 财政年份:2023
- 资助金额:
$ 36.55万 - 项目类别:
19th International Conference of the Pacific Basin Consortium for Environment and Health
第十九届太平洋盆地环境与健康联盟国际会议
- 批准号:
10469074 - 财政年份:2022
- 资助金额:
$ 36.55万 - 项目类别:
Environmental Health in a Changing Climate: the 19th International Conference of the Pacific Basin Consortium for Environment and Health
气候变化中的环境健康:第十九届太平洋盆地环境与健康联盟国际会议
- 批准号:
10307011 - 财政年份:2021
- 资助金额:
$ 36.55万 - 项目类别:
Neurophysiological and transcriptomic predictors of chronic low back pain: towards precision pain management (NEAT Study)
慢性腰痛的神经生理学和转录组学预测因素:实现精准疼痛管理(NEAT 研究)
- 批准号:
10194615 - 财政年份:2019
- 资助金额:
$ 36.55万 - 项目类别:
Neurophysiological and transcriptomic predictors of chronic low back pain: towards precision pain management (NEAT Study)
慢性腰痛的神经生理学和转录组学预测因素:实现精准疼痛管理(NEAT 研究)
- 批准号:
10424412 - 财政年份:2019
- 资助金额:
$ 36.55万 - 项目类别: