Collaborative Research: Controlling the Chemistry at the Nanoscale: Parallelization, Robustness and Registration

合作研究:控制纳米级化学:并行化、鲁棒性和配准

基本信息

  • 批准号:
    1914540
  • 负责人:
  • 金额:
    $ 2.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Nanofabrication is the process of making functional structures with arbitrary patterns having nanoscale dimensions. Nanofabrication has been widely implemented commercially for improving microelectronic devices and information technology. However, the limitations of conventional lithography techniques in terms of resolution, capital and operational costs, and limited flexibility in terms of materials that can be patterned and fabricated have motivated the development of unconventional fabrication methods. Scanning probe lithography is one of these promising new fabrication methods, and it uses a scanning sharp probe to produce with nanoscale precision modifications on the surface of a material. This award supports fundamental research for the development of a scanning probe lithography method based on hot probes, which are used to thermo-chemically change the properties of a material at the nanoscale. This technology, called thermochemical nanolithography, has a broad range of applications, in particular to fabricate nanostructures in graphene, conductive polymers nanowires, DNA and protein nano-arrays. The research work is geared toward answering questions that can facilitate the wide scale use of thermochemical nanolithography and providing students with a unique interdisciplinary training that includes developing knowledge in materials science, spectroscopy, nano- and micro-fabrication, and surface science techniques. This will enable the team to augment the community's understanding of nanoscale processes and potentially provide inexpensive and robust tools to decrease the cost of entry into nanolithographic patterning. Thermochemical nanolithography is a versatile atomic force microscopy based technique that can be used to fabricate nanostructures and nanoribbons of graphene-like materials via local thermal reduction of chemically modified graphene. Thermochemical nanolithography uses thermal probes to locally heat the surface of a material to produce a variety of nano-scale chemical reactions, which can be controlled in terms of spatial resolution and extent of chemical conversion, so that complex chemical gradients can be obtained. For applications in the next generation of electronic, sensor and energy nano-devices based on graphene-like materials, this project aims to address the following issues: (i) fabrication of defect-free graphene nanoribbons with control over size, length and positioning (registry) on arbitrary substrates; and (ii) nanoscale control of the chemistry of graphene and other materials nanostructures. The research team will use experiments, finite elements calculations and density functional theory simulations for understanding and controlling the nanoscale thermo-chemical modification of graphene-based materials to fabricate graphene nanoribbons of high quality with excellent control over positioning and size. Furthermore, this project aims at developing parallel (up to 100 probes) patterning using novel concepts of temperature control and software, with the goal of writing and then reading more than 1 million 10-nm pixels in 1 second.
纳米纤维是制造具有纳米尺度的任意图案的功能结构的过程。纳米纤维已经被广泛地商业化用于改进微电子器件和信息技术。然而,常规光刻技术在分辨率、资本和操作成本方面的限制以及在可被图案化和制造的材料方面的有限灵活性已经促使非常规制造方法的发展。扫描探针光刻技术是一种很有前途的新的制造方法,它使用扫描探针在材料表面进行纳米级的精密修饰。该奖项支持基于热探针的扫描探针光刻方法的基础研究,该方法用于在纳米级热化学改变材料的特性。这种称为热化学纳米光刻的技术具有广泛的应用,特别是在石墨烯、导电聚合物纳米线、DNA和蛋白质纳米阵列中制造纳米结构。研究工作是面向回答问题,可以促进热化学纳米光刻的广泛使用,并为学生提供一个独特的跨学科的培训,包括开发材料科学,光谱学,纳米和微制造和表面科学技术的知识。这将使该团队能够增强社区对纳米级工艺的理解,并可能提供廉价而强大的工具,以降低进入纳米光刻图案化的成本。热化学纳米光刻是一种基于原子力显微镜的多功能技术,其可用于通过化学改性的石墨烯的局部热还原来制造石墨烯类材料的纳米结构和纳米带。热化学纳米光刻利用热探针对材料表面进行局部加热,产生多种纳米尺度的化学反应,可以在空间分辨率和化学转化程度方面进行控制,从而获得复杂的化学梯度。对于基于石墨烯类材料的下一代电子,传感器和能源纳米器件的应用,该项目旨在解决以下问题:(i)在任意衬底上控制尺寸,长度和定位(注册)的无缺陷石墨烯纳米带的制造;以及(ii)石墨烯和其他材料纳米结构化学的纳米级控制。研究团队将使用实验,有限元计算和密度泛函理论模拟来理解和控制石墨烯基材料的纳米级热化学改性,以制造高质量的石墨烯纳米带,并对定位和尺寸进行出色的控制。此外,该项目旨在使用温度控制和软件的新概念开发并行(多达100个探针)图案化,目标是在1秒内写入然后阅读超过100万个10 nm像素。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elisa Riedo其他文献

Probing the Mechanical Properties of 2D Materials via Atomic‐Force‐Microscopy‐Based Modulated Nanoindentation
通过基于原子力显微镜的调制纳米压痕探测二维材料的机械性能
  • DOI:
    10.1002/smtd.202301043
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    12.4
  • 作者:
    Ryan M Khan;M. Rejhon;Yanxiao Li;Nitika Parashar;Elisa Riedo;R. Wixom;F. DelRio;R. Dingreville
  • 通讯作者:
    R. Dingreville
Collaborative Research: AGEP FC-PAM: Project ELEVATE (Equity-focused Launch to Empower and Value AGEP Faculty to Thrive in Engineering)
合作研究:AGEP FC-PAM:ELEVATE 项目(以股权为重点的启动,以赋予 AGEP 教师权力和价值,使其在工程领域蓬勃发展)
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alaine M. Allen;Darlene Saporu;Elisa Riedo;Shelley L. Anna;Linda DeAngelo: Andrew Douglas;Nathalie Florence Felciai;Neetha Khan;Jelena Kovacevic;Stacey J. Marks;William Harry Sanders
  • 通讯作者:
    William Harry Sanders
Two-dimensional diamonds from sp2-to-sp3 phase transitions
二维金刚石:从 sp2 到 sp3 的相变
  • DOI:
    10.1038/s41578-022-00451-y
  • 发表时间:
    2022-06-27
  • 期刊:
  • 影响因子:
    86.200
  • 作者:
    Francesco Lavini;Martin Rejhon;Elisa Riedo
  • 通讯作者:
    Elisa Riedo
High-speed, Thermo-chemical Nanolithography for Biological Applications
  • DOI:
    10.1016/j.bpj.2008.12.2029
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Debin Wang;Vamsi Kodali;William D. Underwood;Robert Szoszkiewicz;Takashi Okada;Simon C. Jones;Marcel Lucas;Jonas E. Jarvholm;William P. King;Seth R. Marder;Jennifer E. Curtis;Elisa Riedo
  • 通讯作者:
    Elisa Riedo
Sliding charges
滑动费用
  • DOI:
    10.1038/nmat4020
  • 发表时间:
    2014-06-20
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Robert Szoszkiewicz;Elisa Riedo
  • 通讯作者:
    Elisa Riedo

Elisa Riedo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elisa Riedo', 18)}}的其他基金

ADVANCE Adaptation: NYU InterScience-Systemic Changes in Leadership and Climate for Inclusive STEM
推进适应:纽约大学跨科学-包容性 STEM 领导力和氛围的系统性变化
  • 批准号:
    2305370
  • 财政年份:
    2023
  • 资助金额:
    $ 2.73万
  • 项目类别:
    Standard Grant
Collaborative Research: AGEP FC-PAM: Project ELEVATE (Equity-focused Launch to Empower and Value AGEP Faculty to Thrive in Engineering)
合作研究:AGEP FC-PAM:ELEVATE 项目(以股权为重点的启动,以赋予 AGEP 教师权力和价值,使其在工程领域蓬勃发展)
  • 批准号:
    2149899
  • 财政年份:
    2022
  • 资助金额:
    $ 2.73万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of NanoFrazor for Nanofabrication of Advanced Nanomaterials with Ultimate Resolution and Flexibility
MRI:收购 NanoFrazor,用于具有终极分辨率和灵活性的先进纳米材料的纳米制造
  • 批准号:
    1929453
  • 财政年份:
    2018
  • 资助金额:
    $ 2.73万
  • 项目类别:
    Standard Grant
Nanoscale investigations of water-solid interfaces for filtration applications
用于过滤应用的水-固体界面的纳米级研究
  • 批准号:
    1914539
  • 财政年份:
    2018
  • 资助金额:
    $ 2.73万
  • 项目类别:
    Standard Grant
MRI: Acquisition of NanoFrazor for Nanofabrication of Advanced Nanomaterials with Ultimate Resolution and Flexibility
MRI:收购 NanoFrazor,用于具有终极分辨率和灵活性的先进纳米材料的纳米制造
  • 批准号:
    1626101
  • 财政年份:
    2016
  • 资助金额:
    $ 2.73万
  • 项目类别:
    Standard Grant
Nanoscale investigations of water-solid interfaces for filtration applications
用于过滤应用的水-固体界面的纳米级研究
  • 批准号:
    1604504
  • 财政年份:
    2016
  • 资助金额:
    $ 2.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Controlling the Chemistry at the Nanoscale: Parallelization, Robustness and Registration
合作研究:控制纳米级化学:并行化、鲁棒性和配准
  • 批准号:
    1618941
  • 财政年份:
    2015
  • 资助金额:
    $ 2.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Controlling the Chemistry at the Nanoscale: Parallelization, Robustness and Registration
合作研究:控制纳米级化学:并行化、鲁棒性和配准
  • 批准号:
    1436375
  • 财政年份:
    2014
  • 资助金额:
    $ 2.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Nanomanufacturing Reduced Graphene Oxide
合作研究:纳米制造还原氧化石墨烯
  • 批准号:
    1100290
  • 财政年份:
    2011
  • 资助金额:
    $ 2.73万
  • 项目类别:
    Standard Grant
Liquid Dynamics in Nano-Confined Geometries: Nanohydrodynamics
纳米受限几何中的液体动力学:纳米流体动力学
  • 批准号:
    0706031
  • 财政年份:
    2007
  • 资助金额:
    $ 2.73万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319848
  • 财政年份:
    2024
  • 资助金额:
    $ 2.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319849
  • 财政年份:
    2024
  • 资助金额:
    $ 2.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319850
  • 财政年份:
    2024
  • 资助金额:
    $ 2.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319847
  • 财政年份:
    2024
  • 资助金额:
    $ 2.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and controlling force generation by a centrin-based contractile system
合作研究:理解和控制基于中心蛋白的收缩系统产生的力
  • 批准号:
    2313727
  • 财政年份:
    2023
  • 资助金额:
    $ 2.73万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and controlling force generation by a centrin-based contractile system
合作研究:理解和控制基于中心蛋白的收缩系统产生的力
  • 批准号:
    2313726
  • 财政年份:
    2023
  • 资助金额:
    $ 2.73万
  • 项目类别:
    Continuing Grant
Collaborative Research: Probing and Controlling Exciton-Plasmon Interaction for Solar Hydrogen Generation
合作研究:探测和控制太阳能制氢的激子-等离子体激元相互作用
  • 批准号:
    2230729
  • 财政年份:
    2023
  • 资助金额:
    $ 2.73万
  • 项目类别:
    Continuing Grant
Collaborative Research: Controlling the properties of oxide-encapsulated metals for interfacial catalysis
合作研究:控制氧化物封装金属的界面催化性能
  • 批准号:
    2311986
  • 财政年份:
    2023
  • 资助金额:
    $ 2.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Controlling Metal-Oxide Interface Chemistry for New C-H Activation Catalysts
合作研究:控制新型 C-H 活化催化剂的金属-氧化物界面化学
  • 批准号:
    2329470
  • 财政年份:
    2023
  • 资助金额:
    $ 2.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and controlling force generation by a centrin-based contractile system
合作研究:理解和控制基于中心蛋白的收缩系统产生的力
  • 批准号:
    2313723
  • 财政年份:
    2023
  • 资助金额:
    $ 2.73万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了