Collaborative Research: Uncertainty Quantification, Optimal Designs and Calibration in Computer Experiments

协作研究:计算机实验中的不确定性量化、优化设计和校准

基本信息

  • 批准号:
    1914632
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

From aerospace designs to material science to biomedical studies, today's practice in engineering and physical sciences has made increasing use of computer simulations. How to design the computer simulations, analyze the computer output data, as well as to enhance the accuracy of the computer models are fundamental challenges in computer simulations. This project will focus on the development of a statistical framework for computer experiments, with the goal of developing both theoretical and methodological tools that cover the typical computer simulation pipeline from data collection to modeling and analysis to verification and validation. Specifically, the team plans to establish a new uncertainty quantification theory and foster novel methodologies for data mining, interpretation and decision making. The project will provide accurate, efficient and robust approaches that would make an impact on contemporary computer simulation practice. A graduate student will work on both the theoretical derivations and numerical verification for the project.The project has three major objectives: (i) establish a statistically and computationally efficient uncertainty quantification framework for Gaussian process regression, (ii) propose a general experimental design scheme for multi-fidelity computer experiments, (iii) study the statistical properties and suggest efficient algorithms for novel calibration methods for computer models. The proposed work should lead to methodological development of a generic nature in the design, uncertainty quantification and calibration in computer experiments. The improved uniform error bounds can potentially lead to the use of fewer experimental runs for the same precision. Their significance can go beyond computer experiments such as in spatial statistics, which heavily uses kriging method. The optimal designs for nonstationary Gaussian Process models can help stimulate further development of experimental design theory in more complex situations. Standard approaches in experimental design do not pay much attention to the nonstationary situations. The proposed algorithm can substantially enhance the value of the projected kernel calibration (PKC) method. Although PKC is known to be theoretically superior, there is no known algorithm that can effectively calculate the PKC estimates. Because calibration is used to bridge the gap between computer simulations and physical experiments, this work can be potentially significant. Theoretical and technical advances made in this project can help facilitate further interactions between statistics, applied mathematics and probability theory, through journal publications, student exchange visits and presentations in interdisciplinary conferences, etc.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从航空航天设计到材料科学再到生物医学研究,今天的工程和物理科学实践越来越多地使用计算机模拟。如何设计计算机仿真,分析计算机输出数据,以及提高计算机模型的精度,是计算机仿真的根本挑战。该项目将侧重于开发计算机实验的统计框架,目标是开发理论和方法工具,涵盖从数据收集到建模和分析再到验证和验证的典型计算机模拟流程。具体地说,该团队计划建立一种新的不确定性量化理论,并培育用于数据挖掘、解释和决策的新方法。该项目将提供准确、高效和可靠的方法,对当代计算机模拟实践产生影响。该项目有三个主要目标:(I)为高斯过程回归建立一个统计上和计算上都有效的不确定性量化框架;(Ii)提出一个多保真计算机实验的通用实验设计方案;(Iii)研究计算机模型的统计特性,并为新的校准方法提出有效的算法。拟议的工作应导致在设计、计算机实验的不确定度量化和校准中发展具有一般性的方法学。改进的统一误差界可能会导致在相同精度下使用更少的实验运行。它们的意义可以超越计算机实验,例如在大量使用克里格法的空间统计学中。非平稳高斯过程模型的优化设计有助于在更复杂的情况下促进实验设计理论的进一步发展。实验设计中的标准方法不太注意非平稳情况。该算法大大提高了投影核校准(PKC)方法的性能。虽然已知PKC在理论上是优越的,但还没有已知的算法可以有效地计算PKC估计。由于校准被用来弥合计算机模拟和物理实验之间的差距,这项工作可能具有潜在的重大意义。在这个项目中取得的理论和技术进步可以通过期刊出版物、学生互访和在跨学科会议上的陈述等方式,帮助促进统计学、应用数学和概率论之间的进一步互动。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

C. F. Jeff Wu其他文献

OPTIMAL BLOCKING AND FOLDOVER PLANS FOR REGULAR TWO-LEVEL DESIGNS
常规两层设计的最佳分块和折叠计划
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Mingyao Ai;Xu Xu;C. F. Jeff Wu
  • 通讯作者:
    C. F. Jeff Wu
A fresh look at effect aliasing and interactions: some new wine in old bottles
Statistical estimation in passenger-to-train assignment models based on automated data
基于自动化数据的乘客到列车分配模型的统计估计

C. F. Jeff Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('C. F. Jeff Wu', 18)}}的其他基金

Collaborative Research: Statistical Modeling of Mechanosensing by Cell Surface Receptors
合作研究:细胞表面受体机械传感的统计模型
  • 批准号:
    1660504
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Innovations in Statistical Modeling, Prediction, and Design for Computer Experiments
FRG:协作研究:统计建模、预测和计算机实验设计的创新
  • 批准号:
    1564438
  • 财政年份:
    2016
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Computer Experiments with Tuning or Calibration Parameters: Modeling, Estimation and Design
具有调整或校准参数的计算机实验:建模、估计和设计
  • 批准号:
    1308424
  • 财政年份:
    2013
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Computer Experiments: Multi-Layer Designs, Kriging, and Beyond
计算机实验:多层设计、克里金法及其他
  • 批准号:
    1007574
  • 财政年份:
    2010
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: GOALI Statistical Methods for Modern IT Systems
合作研究:现代 IT 系统的 GOALI 统计方法
  • 批准号:
    0705261
  • 财政年份:
    2007
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
MSPA-MPS: Experimental design for achieving consistent and high yield in the controlled synthesis of nanostructures
MSPA-MPS:在纳米结构的受控合成中实现一致和高产率的实验设计
  • 批准号:
    0706436
  • 财政年份:
    2007
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
SACE: Statistics-Aided Computer Experiments
SACE:统计辅助计算机实验
  • 批准号:
    0620259
  • 财政年份:
    2006
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Statistical Research in Drug Discovery and Development
药物发现和开发的统计研究
  • 批准号:
    0305996
  • 财政年份:
    2004
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Design and Analysis of Experiments for Screening, Optimization and Robustness
筛选、优化和稳健性实验的设计和分析
  • 批准号:
    0426382
  • 财政年份:
    2003
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Design and Analysis of Experiments for Screening, Optimization and Robustness
筛选、优化和稳健性实验的设计和分析
  • 批准号:
    0072489
  • 财政年份:
    2000
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: DRMS:Group cognition, stress arousal, and environment feedbacks in decision making and adaptation under uncertainty
合作研究:DRMS:不确定性下决策和适应中的群体认知、压力唤醒和环境反馈
  • 批准号:
    2343727
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Collaborative Research: DRMS:Group cognition, stress arousal, and environment feedbacks in decision making and adaptation under uncertainty
合作研究:DRMS:不确定性下决策和适应中的群体认知、压力唤醒和环境反馈
  • 批准号:
    2343728
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Planning for Uncertainty in Coupled Water-Power Distribution Networks
合作研究:水电耦合配电网的不确定性规划
  • 批准号:
    2222097
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: Reducing Model Uncertainty by Improving Understanding of Pacific Meridional Climate Structure during Past Warm Intervals
合作研究:通过提高对过去温暖时期太平洋经向气候结构的理解来降低模型不确定性
  • 批准号:
    2303568
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Planning for Uncertainty in Coupled Water-Power Distribution Networks
合作研究:水电耦合配电网的不确定性规划
  • 批准号:
    2334551
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning for Uncertainty in Coupled Water-Power Distribution Networks
合作研究:水电耦合配电网的不确定性规划
  • 批准号:
    2222096
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: Reducing Model Uncertainty by Improving Understanding of Pacific Meridional Climate Structure during Past Warm Intervals
合作研究:通过提高对过去温暖时期太平洋经向气候结构的理解来降低模型不确定性
  • 批准号:
    2303566
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Reducing Model Uncertainty by Improving Understanding of Pacific Meridional Climate Structure during Past Warm Intervals
合作研究:通过提高对过去温暖时期太平洋经向气候结构的理解来降低模型不确定性
  • 批准号:
    2303567
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
CAS-Climate/Collaborative Research: Prediction and Uncertainty Quantification of Non-Gaussian Spatial Processes with Applications to Large-scale Flooding in Urban Areas
CAS-气候/合作研究:非高斯空间过程的预测和不确定性量化及其在城市地区大规模洪水中的应用
  • 批准号:
    2210811
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了