Computer Experiments with Tuning or Calibration Parameters: Modeling, Estimation and Design
具有调整或校准参数的计算机实验:建模、估计和设计
基本信息
- 批准号:1308424
- 负责人:
- 金额:$ 17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the statistical approach to computer experiments, Gaussian process models are often employed to describe the relationship between the simulation output and the input variables. There are three types of input variables: control variables, tuning parameters and calibration parameters. The tuning parameter can be the mesh density in finite element analysis. Calibration parameters are also part of the computer code but not part of the physical experiment. The combined data from computer and physical experiments are used to calibrate the computer model. These two types have received much less attention in the literature. The main goal of this proposal is to study some issues in modeling, estimation and design for tuning and calibration parameters in computer experiments. A class of nonstationary Gaussian process models is proposed, which can be used to efficiently link data from simulations with different tuning parameter values. Issues on covariance modeling and comparisons of competing models are studied. For designing computer experiments, typical use of space-filling designs is replaced by non-uniform designs that can better reflect the nonstationary nature of information in the data. For calibration parameters, the standard estimation procedure is shown to be asymptotically inconsistent. A new theoretical framework is proposed for studying the estimation properties, including modification and new estimation procedures to achieve consistency and optimal convergence rates.The last decade has seen rapid advances in realistic physical modeling and efficient numerical methods, which make it possible to use complex mathematical models to mimic physical realities. Computer simulations can be much faster or less costly than running physical experiments. Furthermore, physical experiments can be difficult or infeasible to conduct. Therefore computer simulations are now routinely used in lieu of physical experimentations. Computer modeling and experiments have become popular in scientific and engineering investigations. They have helped reap benefits ranging from reduced development cycle time, better product, to cost reduction. In view of the wide range of applications of complex system simulations, the proposed work should have broad-based impacts on a variety of problems in autos and aerospace, computational material design, geological and atmospheric studies, and green energy simulations. It will be incorporated into publicly released software like R, thus directly benefiting practitioners in industries and researchers in academe.
在计算机实验的统计方法中,经常采用高斯过程模型来描述模拟输出与输入变量之间的关系。有三种类型的输入变量:控制变量,调整参数和校准参数。调整参数可以是有限元分析中的网格密度。校准参数也是计算机代码的一部分,但不属于物理实验。利用计算机模拟和物理实验的数据对计算机模型进行了标定。这两种类型在文献中受到的关注要少得多。本计画的主要目的是研究在电脑实验中,调整与校正参数的建模、估计与设计等问题。提出了一类非平稳高斯过程模型,该模型可以有效地连接来自具有不同调谐参数值的仿真数据。协方差建模和竞争模型的比较问题进行了研究。为了设计计算机实验,空间填充设计的典型应用被非均匀设计所取代,非均匀设计可以更好地反映数据中信息的非平稳性质。对于校准参数,标准的估计过程是渐近不一致的。一个新的理论框架,提出了研究的估计性能,包括修改和新的估计程序,以实现一致性和最佳的收敛rate.The过去的十年中已经看到了快速的进步,在现实的物理建模和有效的数值方法,这使得人们有可能使用复杂的数学模型来模拟物理现实。计算机模拟可以比运行物理实验快得多或成本更低。此外,物理实验可能很难或不可行。因此,计算机模拟现在通常用来代替物理实验。计算机建模和实验在科学和工程研究中已经变得流行。它们帮助获得了从缩短开发周期、更好的产品到降低成本等一系列好处。考虑到复杂系统模拟的广泛应用,所提出的工作应该对汽车和航空航天、计算材料设计、地质和大气研究以及绿色能源模拟中的各种问题产生广泛的影响。它将被整合到像R这样的公开发布的软件中,从而直接使行业从业者和研究人员受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
C. F. Jeff Wu其他文献
OPTIMAL BLOCKING AND FOLDOVER PLANS FOR REGULAR TWO-LEVEL DESIGNS
常规两层设计的最佳分块和折叠计划
- DOI:
- 发表时间:
- 期刊:
- 影响因子:1.4
- 作者:
Mingyao Ai;Xu Xu;C. F. Jeff Wu - 通讯作者:
C. F. Jeff Wu
A fresh look at effect aliasing and interactions: some new wine in old bottles
- DOI:
10.1007/s10463-018-0646-0 - 发表时间:
2018-02-09 - 期刊:
- 影响因子:0.600
- 作者:
C. F. Jeff Wu - 通讯作者:
C. F. Jeff Wu
Statistical estimation in passenger-to-train assignment models based on automated data
基于自动化数据的乘客到列车分配模型的统计估计
- DOI:
10.1002/asmb.2660 - 发表时间:
2022 - 期刊:
- 影响因子:1.4
- 作者:
Shifeng Xiong;Chunya Li;Xuan Sun;Yong Qin;C. F. Jeff Wu - 通讯作者:
C. F. Jeff Wu
C. F. Jeff Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('C. F. Jeff Wu', 18)}}的其他基金
Collaborative Research: Uncertainty Quantification, Optimal Designs and Calibration in Computer Experiments
协作研究:计算机实验中的不确定性量化、优化设计和校准
- 批准号:
1914632 - 财政年份:2019
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: Statistical Modeling of Mechanosensing by Cell Surface Receptors
合作研究:细胞表面受体机械传感的统计模型
- 批准号:
1660504 - 财政年份:2017
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Innovations in Statistical Modeling, Prediction, and Design for Computer Experiments
FRG:协作研究:统计建模、预测和计算机实验设计的创新
- 批准号:
1564438 - 财政年份:2016
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Computer Experiments: Multi-Layer Designs, Kriging, and Beyond
计算机实验:多层设计、克里金法及其他
- 批准号:
1007574 - 财政年份:2010
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: GOALI Statistical Methods for Modern IT Systems
合作研究:现代 IT 系统的 GOALI 统计方法
- 批准号:
0705261 - 财政年份:2007
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
MSPA-MPS: Experimental design for achieving consistent and high yield in the controlled synthesis of nanostructures
MSPA-MPS:在纳米结构的受控合成中实现一致和高产率的实验设计
- 批准号:
0706436 - 财政年份:2007
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
SACE: Statistics-Aided Computer Experiments
SACE:统计辅助计算机实验
- 批准号:
0620259 - 财政年份:2006
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Statistical Research in Drug Discovery and Development
药物发现和开发的统计研究
- 批准号:
0305996 - 财政年份:2004
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Design and Analysis of Experiments for Screening, Optimization and Robustness
筛选、优化和稳健性实验的设计和分析
- 批准号:
0426382 - 财政年份:2003
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Design and Analysis of Experiments for Screening, Optimization and Robustness
筛选、优化和稳健性实验的设计和分析
- 批准号:
0072489 - 财政年份:2000
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
RII Track-4:NSF: Enable Next-Generation Solid-State Batteries via Dynamic Modeling and Control: Theory and Experiments
RII Track-4:NSF:通过动态建模和控制实现下一代固态电池:理论和实验
- 批准号:
2327327 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Beyond experiments: scaling transformative, sustainable business models in the UK
超越实验:在英国扩展变革性、可持续的商业模式
- 批准号:
MR/X035786/1 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Fellowship
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
- 批准号:
EP/Y036778/1 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Research Grant
Piecing together the Neutrino Mass Puzzle in Search of New Particles with Precision Oscillation Experiments and Quantum Technologies
通过精密振荡实验和量子技术拼凑中微子质量难题以寻找新粒子
- 批准号:
ST/W003880/2 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Fellowship
Exploitation of High Voltage CMOS sensors for tracking applications in physics experiments and beyond
利用高压 CMOS 传感器跟踪物理实验及其他领域的应用
- 批准号:
MR/X023834/1 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Fellowship
Scientific Information and Sustainable Farm Production: Evidence from Field Experiments with Soil Tests for Small-scale Farms in Vietnam
科学信息和可持续农业生产:越南小型农场土壤测试现场实验的证据
- 批准号:
24K16354 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
- 批准号:
EP/Y036867/1 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Research Grant
CAREER: Learning mechanistic models with automated experiments
职业:通过自动化实验学习机械模型
- 批准号:
2339026 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
- 批准号:
2419423 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Standard Grant