Statistical Research in Drug Discovery and Development
药物发现和开发的统计研究
基本信息
- 批准号:0305996
- 负责人:
- 金额:$ 39.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-02-15 至 2008-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Three broad issues in drug discovery and development are studied. For target identification, use of microarrays for gene expression has become a standard practice. To test the significance of gene expression for thousands of genes, the issue of multiplicity in testing is central. A new graphical procedure is proposed. For drug discovery, the research focuses on high throughput screening (HTS). A central issue in HTS is to be able to identify as many potent drugs as possible and to achieve this within an economic timeframe. To increase the "hits", both false positive and false negative errors need to be accurately estimated and the cutoff point be chosen optimally. The major research effort focuses on the accurate estimation of false positive and false negative errors, determination of optimal cutoff points, and estimation strategy. The results will be pivotal to the planning of validation studies that are used before the screen is put into production. For drug development, it is proposed to apply modern techniques in design and analysis of experiments to pharmaceutical sciences (formulations and stability) and process R&D (chemical and biological scale-up). Two new techniques are considered: estimation of interactions in experiments with complex aliasing, and robust parameter design for process improvement. Since these techniques were developed in the context of manufacturing and hi-tech industries, new features in the pharmaceutical applications should lead to the development of new methods. The research is a jointly effort by the research group of Jeff Wu (PI) at Georgia Institute of Technology and the nonclinical biostatistics and genetics groups headed by David Stock and Kim Zerba at Bristol-Myers Squibb. Statistical tools have been widely used in drug discovery and development in the pharmaceutical industry. With the increasing competition in the industry and the explosion of disease targets, it is becoming increasingly important to have an efficient system for discovering new compounds and developing them into drugs for clinical trials and scale-up production. There has been a lot of collaborative research between academia and industries on clinical trials. Much less collaboration has been done on preclinical research like drug discovery and development. Successful implementation of this project can serve as a role model for this collaboration. It can have a major societal impact in accelerating the identification of disease target and discovery of compounds for blockbuster drugs, resulting in savings of lives and health care costs. The work should lead to new advances in theory and methodology and the research findings will be presented in professional meetings and published in trade journals. Because of the novelty of applications and the scientific relevance, the methodology and theory developed in this project will be of a broad and generic nature. They will benefit the industrial partner as well as the industry in general. Several Ph.D. students will participate in the project, splitting their time between university and industrial labs. The project will provide a new opportunity for graduate students to be exposed to cutting-edge research in drug discovery and development. It can enrich their educational experience and broaden the prospects for their careers.
研究了药物发现和开发中的三个广泛问题。对于靶标识别,使用微阵列进行基因表达已成为一种标准做法。为了测试数千个基因的基因表达的重要性,测试中的多样性问题是核心。提出了一种新的图解方法。对于药物发现,研究的重点是高通量筛选(HTS)。HTS的一个核心问题是能够识别出尽可能多的强效药物,并在经济的时间框架内实现这一点。为了增加命中率,需要准确地估计误报和漏报错误,并优化选择截止点。主要的研究工作集中在对误判和漏判误差的准确估计、最佳截止点的确定和估计策略上。这些结果将对在屏幕投入生产之前使用的验证研究的规划至关重要。对于药物开发,建议将现代实验设计和分析技术应用于制药科学(配方和稳定性)和过程研发(化学和生物放大)。考虑了两种新技术:复杂混叠实验中交互作用的估计和用于过程改进的稳健参数设计。由于这些技术是在制造业和高科技行业的背景下发展起来的,制药应用的新特点应该导致新方法的开发。这项研究是由佐治亚理工学院的Jeff Wu(Pi)研究小组与百时美施贵宝的David Stock和Kim Zerba领导的非临床生物统计学和遗传学小组共同努力的。统计工具在制药行业的药物发现和开发中得到了广泛的应用。随着行业竞争的加剧和疾病靶点的爆炸性增长,拥有一个有效的系统来发现新的化合物并将其开发成用于临床试验和规模化生产的药物变得越来越重要。学术界和产业界在临床试验方面进行了大量的合作研究。在药物发现和开发等临床前研究方面的合作要少得多。该项目的成功实施可以作为这种协作的榜样。它可以在加速确定疾病目标和发现重磅炸弹药物的化合物方面产生重大的社会影响,从而节省生命和医疗费用。这项工作应该在理论和方法上带来新的进步,研究结果将在专业会议上提出,并在行业期刊上发表。由于应用的新颖性和科学相关性,本项目开发的方法和理论将具有广泛和一般性。它们将使行业合作伙伴和整个行业受益。几名博士生将参与这个项目,他们的时间被分配在大学和工业实验室之间。该项目将为研究生提供一个接触药物发现和开发方面的前沿研究的新机会。它可以丰富他们的教育经验,拓宽他们的职业前景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
C. F. Jeff Wu其他文献
OPTIMAL BLOCKING AND FOLDOVER PLANS FOR REGULAR TWO-LEVEL DESIGNS
常规两层设计的最佳分块和折叠计划
- DOI:
- 发表时间:
- 期刊:
- 影响因子:1.4
- 作者:
Mingyao Ai;Xu Xu;C. F. Jeff Wu - 通讯作者:
C. F. Jeff Wu
A fresh look at effect aliasing and interactions: some new wine in old bottles
- DOI:
10.1007/s10463-018-0646-0 - 发表时间:
2018-02-09 - 期刊:
- 影响因子:0.600
- 作者:
C. F. Jeff Wu - 通讯作者:
C. F. Jeff Wu
Statistical estimation in passenger-to-train assignment models based on automated data
基于自动化数据的乘客到列车分配模型的统计估计
- DOI:
10.1002/asmb.2660 - 发表时间:
2022 - 期刊:
- 影响因子:1.4
- 作者:
Shifeng Xiong;Chunya Li;Xuan Sun;Yong Qin;C. F. Jeff Wu - 通讯作者:
C. F. Jeff Wu
C. F. Jeff Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('C. F. Jeff Wu', 18)}}的其他基金
Collaborative Research: Uncertainty Quantification, Optimal Designs and Calibration in Computer Experiments
协作研究:计算机实验中的不确定性量化、优化设计和校准
- 批准号:
1914632 - 财政年份:2019
- 资助金额:
$ 39.88万 - 项目类别:
Standard Grant
Collaborative Research: Statistical Modeling of Mechanosensing by Cell Surface Receptors
合作研究:细胞表面受体机械传感的统计模型
- 批准号:
1660504 - 财政年份:2017
- 资助金额:
$ 39.88万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Innovations in Statistical Modeling, Prediction, and Design for Computer Experiments
FRG:协作研究:统计建模、预测和计算机实验设计的创新
- 批准号:
1564438 - 财政年份:2016
- 资助金额:
$ 39.88万 - 项目类别:
Continuing Grant
Computer Experiments with Tuning or Calibration Parameters: Modeling, Estimation and Design
具有调整或校准参数的计算机实验:建模、估计和设计
- 批准号:
1308424 - 财政年份:2013
- 资助金额:
$ 39.88万 - 项目类别:
Continuing Grant
Computer Experiments: Multi-Layer Designs, Kriging, and Beyond
计算机实验:多层设计、克里金法及其他
- 批准号:
1007574 - 财政年份:2010
- 资助金额:
$ 39.88万 - 项目类别:
Standard Grant
Collaborative Research: GOALI Statistical Methods for Modern IT Systems
合作研究:现代 IT 系统的 GOALI 统计方法
- 批准号:
0705261 - 财政年份:2007
- 资助金额:
$ 39.88万 - 项目类别:
Standard Grant
MSPA-MPS: Experimental design for achieving consistent and high yield in the controlled synthesis of nanostructures
MSPA-MPS:在纳米结构的受控合成中实现一致和高产率的实验设计
- 批准号:
0706436 - 财政年份:2007
- 资助金额:
$ 39.88万 - 项目类别:
Standard Grant
SACE: Statistics-Aided Computer Experiments
SACE:统计辅助计算机实验
- 批准号:
0620259 - 财政年份:2006
- 资助金额:
$ 39.88万 - 项目类别:
Standard Grant
Design and Analysis of Experiments for Screening, Optimization and Robustness
筛选、优化和稳健性实验的设计和分析
- 批准号:
0426382 - 财政年份:2003
- 资助金额:
$ 39.88万 - 项目类别:
Continuing Grant
Design and Analysis of Experiments for Screening, Optimization and Robustness
筛选、优化和稳健性实验的设计和分析
- 批准号:
0072489 - 财政年份:2000
- 资助金额:
$ 39.88万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Drug decriminalization in British Columbia: An equity-oriented qualitative research project
不列颠哥伦比亚省的毒品非刑事化:一个以公平为导向的定性研究项目
- 批准号:
480086 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Operating Grants
Network Canvas 2.0: Enhancing network data capture for drug use and HIV research
Network Canvas 2.0:增强药物使用和艾滋病毒研究的网络数据捕获
- 批准号:
10715902 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
A study on metabolism of peptoids toward development of synthetic oligomers for drug discovery research
类肽代谢研究以开发用于药物发现研究的合成寡聚物
- 批准号:
23H02078 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Prediction and validation of plausible biological phenomena using systematic preprocessing in drug discovery research.
在药物发现研究中使用系统预处理来预测和验证合理的生物现象。
- 批准号:
23K11320 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The ANTIDOTE Institute- Advancing New Toxicology Investigators in Drug abuse and Original Translational research Efforts
ANTIDOTE Institute - 推动新毒理学研究人员在药物滥用和原创转化研究工作中的发展
- 批准号:
10681927 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Enhancing Drug Discovery Research by Free Energy Modeling
通过自由能建模加强药物发现研究
- 批准号:
10730788 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Research on the establishment of novel drug treatment strategies for atrial fibrillation inspired by cancer pharmacotherapy
受癌症药物治疗启发建立心房颤动新药物治疗策略的研究
- 批准号:
23K07564 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pioneering research on development of "Drug Delivery System" for deworming gastrointestinal-infected Anisakis
开创性研究开发“药物输送系统”以驱除胃肠道感染的异尖线虫
- 批准号:
23K17446 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Responding to the Toxic Drug Crisis for Young People Who Use Drugs in British Columbia: An Applied Program of Substance Use Research, Capacity-Building, and Integrated Knowledge Mobilization
应对不列颠哥伦比亚省吸毒年轻人的有毒药物危机:药物使用研究、能力建设和综合知识动员的应用计划
- 批准号:
499029 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Salary Programs
Community-Driven Indigenous Research, Cultural Strengths & Leadership to Advance Equity in Drug Use Outcomes (CIRCLE)
社区驱动的本土研究、文化优势
- 批准号:
10713129 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别: