SCH: INT: Collaborative Research: Detection, Assessment and Rehabilitation of Stroke-Induced Visual Neglect Using Augmented Reality (AR) and Electroencephalography (EEG)
SCH:INT:合作研究:使用增强现实 (AR) 和脑电图 (EEG) 检测、评估和康复中风引起的视觉忽视
基本信息
- 批准号:1915083
- 负责人:
- 金额:$ 78.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Unilateral spatial neglect is a perceptual disorder that is one of the most common consequences of right-side brain damage after stroke, occurring in 29% of the 15 million people who sustain stroke worldwide. Patients with neglect demonstrate inattention to objects or events on the side that is opposite to the damaged part of the brain. They often miss food on one side of the plate, missing words on one side of the page, bumping into the left door jamb, getting confused by moving objects, and being fearful of walking in crowded places. The current gold standard for detecting and rehabilitating neglect lacks generalizability to dynamic tasks and contexts encountered during activities of daily living (ADL). The investigators in this project will develop a brain-computer interface (BCI) system that will be implemented in augmented reality (AR) environment for detection, assessment and rehabilitation of unilateral neglect during ADL. More specifically, the system will in real-time monitor the brain activity recorded through electroencephalography (EEG) for the detection and assessment of visually neglected extra-personal space. Moreover, the system will also include haptic, auditory and visual stimulation while the users are engaged in real-world tasks conducted during rehabilitation for reducing neglect-related disabilities. It is also anticipated that the novel scientific discoveries and engineering enhancements of this project will have effects on the current practice on BCIs: (i) enabling design and implementation of such systems in more naturalistic environments providing more immersive experiences; and (ii) expansion of the use of BCIs in the design of intervention and rehabilitation techniques for other neurological disorders. This project will promote STEM education and provide rigorous training and variety of hands-on experiences to researchers from K-12 to graduate level.The research objective of this project is to introduce a prototype for stroke-induced neglect detection, assessment, and rehabilitation system, featuring: (i) seamless integration of EEG and AR in the design of visually evoked EEG-based BCIs to operate during activities of daily living; (ii) accurate and continuous EEG event related potential detection for neglect assessment and mapping through Bayesian inference models; (iii) information theoretic optimum design of neglect intervention focusing on activities of daily living; and (iv) multimodal real-time feedback for rehabilitation of neglect related disabilities during intervention. Unlike the common computerized neglect assessment methods, EEG will not require any physical responses from the patient. Also, the use of EEG permits automation, making it an ideal method to guide a personalized and automated neglect intervention. It is known that one common element among the existing interventions that have shown promise for reducing neglect is multimodal stimulation to the neglected side of the body or environment. Timely feedback to the user when neglect is detected during the continuous EEG monitoring will enable this stimulation. Finally, used in conjunction with AR headset and skill-based training during acute inpatient rehabilitation, the planned system will provide the opportunity to deliver high-intensity repetitive stimulation with progression during meaningful everyday activities. The outcomes of this project will be disseminated to the scientific community through technical reports, journal publications and conference presentations. All software developed through this project will be publicly available through archival repositories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
单侧空间忽视是一种知觉障碍,是中风后右侧脑损伤最常见的后果之一,在全球1500万中风患者中,29%的人会发生这种疾病。疏忽的患者表现出对大脑受损部分对面的物体或事件的疏忽。他们经常错过盘子一侧的食物,错过页面一侧的单词,撞到左边的门框,被移动的物体搞糊涂,害怕走在拥挤的地方。目前检测和修复忽视的黄金标准缺乏对日常生活活动(ADL)中遇到的动态任务和背景的概括性。该项目的研究人员将开发一个脑机接口(BCI)系统,该系统将在增强现实(AR)环境中实现,用于检测、评估和康复ADL期间的单边忽视。更具体地说,该系统将实时监测通过脑电(EEG)记录的大脑活动,以检测和评估视觉上被忽视的非个人空间。此外,该系统还将包括触觉、听觉和视觉刺激,同时使用者在康复期间进行真实世界的任务,以减少与忽视相关的残疾。预计该项目的新科学发现和工程改进将对BCI的当前实践产生影响:(I)使这种系统能够在更自然的环境中设计和实施,提供更身临其境的体验;以及(Ii)扩大BCI在设计其他神经疾病的干预和康复技术方面的使用。本项目将促进STEM教育,为从K-12到研究生水平的研究人员提供严格的培训和各种实践经验。本项目的研究目标是介绍一个卒中疏忽检测、评估和康复系统的原型,其特点是:(1)在基于视觉诱发脑电的BCI的设计中无缝集成脑电和AR,以便在日常生活活动中操作;(2)通过贝叶斯推理模型进行准确和连续的脑电事件相关电位检测,以进行疏忽评估和地图绘制;(3)以日常生活活动为重点的疏忽干预的信息论优化设计;以及(Iv)多模式实时反馈,用于干预期间忽视相关残疾的康复。与常见的电脑疏忽评估方法不同,EEG不需要患者做出任何身体反应。此外,EEG的使用允许自动化,使其成为指导个性化和自动化忽视干预的理想方法。众所周知,在现有干预措施中,显示出减少忽视的希望的一个共同因素是对身体或环境被忽视的一侧的多模式刺激。在连续的脑电监测过程中,当检测到疏忽时,及时反馈给用户,将使这种刺激成为可能。最后,在急性住院康复期间,结合AR耳机和基于技能的训练使用,计划中的系统将提供在有意义的日常活动中提供高强度重复刺激和进步的机会。该项目的成果将通过技术报告、期刊出版物和会议报告向科学界传播。通过该项目开发的所有软件将通过档案库公开提供。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stopping Criterion Design for Recursive Bayesian Classification: Analysis and Decision Geometry
- DOI:10.1109/tpami.2021.3075915
- 发表时间:2020-07
- 期刊:
- 影响因子:23.6
- 作者:Aziz Koçanaoğulları;M. Akçakaya;Deniz Erdoğmuş
- 通讯作者:Aziz Koçanaoğulları;M. Akçakaya;Deniz Erdoğmuş
EEG-based Texture Roughness Classification in Active Tactile Exploration with Invariant Representation Learning Networks
- DOI:10.1016/j.bspc.2021.102507
- 发表时间:2021-02
- 期刊:
- 影响因子:5.1
- 作者:Ozan Ozdenizci;Safaa M. Eldeeb;Andac Demir;Deniz Erdoğmuş;M. Akçakaya
- 通讯作者:Ozan Ozdenizci;Safaa M. Eldeeb;Andac Demir;Deniz Erdoğmuş;M. Akçakaya
Optimal Modality Selection Using Information Transfer Rate for Event Related Potential Driven Brain Computer Interfaces
使用事件相关电位驱动脑机接口的信息传输率进行最佳模态选择
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:A. Kocanaogullari, M. Akcakaya
- 通讯作者:A. Kocanaogullari, M. Akcakaya
Fine-tuning and Personalization of EEG-based Neglect Detection in Stroke Patients
基于脑电图的中风患者忽视检测的微调和个性化
- DOI:10.1109/embc46164.2021.9630794
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kocanaogullari, Deniz;Huang, Xiaofei;Mak, Jennifer;Shih, Minmei;Skidmore, Elizabeth;Wittenberg, George F.;Ostadabbas, Sarah;Akcakaya, Murat
- 通讯作者:Akcakaya, Murat
An Active Recursive State Estimation Framework for Brain-Interfaced Typing Systems
脑机接口打字系统的主动递归状态估计框架
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:A. Kocanaogullari, M. Yarghi
- 通讯作者:A. Kocanaogullari, M. Yarghi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Murat Akcakaya其他文献
PO-02-100 PREDICTION OF ATRIAL FIBRILLATION FROM STRUCTURED ELECTRONIC HEALTH RECORD DATA
PO-02-100 基于结构化电子健康记录数据的心房颤动预测
- DOI:
10.1016/j.hrthm.2025.03.582 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:5.700
- 作者:
Tanmay Gokhale;Nirav Bhatt;Matthew Starr;Suresh Mulukutla;Floyd Thoma;Murat Akcakaya;Salah Al-Zaiti;Raul Nogueira;Samir F. Saba - 通讯作者:
Samir F. Saba
<strong>Session IV:</strong>
- DOI:
10.1016/j.jelectrocard.2023.03.029 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Zeineb Bouzid;Nathan T. Riek;Peter Van Dam;Tanmay Gokhale;Murat Akcakaya;Ervin Sejdic;Salah Al-Zaiti - 通讯作者:
Salah Al-Zaiti
Robust estimation of ST segment amplitude: Revisiting the logic of automated ECG interpretation systems for STEMI classification
- DOI:
10.1016/j.jelectrocard.2023.03.059 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Nathan T. Riek;Peter Van Dam;Zeineb Bouzid;Tanmay Gokhale;Richard Gregg;Ervin Sejdic;Murat Akcakaya;Salah Al-Zaiti - 通讯作者:
Salah Al-Zaiti
RISK STRATIFICATION OF PULMONARY EMBOLISM VIA ECG-BASED MACHINE LEARNING MODEL
- DOI:
10.1016/s0735-1097(24)04305-5 - 发表时间:
2024-04-02 - 期刊:
- 影响因子:
- 作者:
Tanmay Gokhale;Nathan T. Riek;Zeineb Bouzid;Brent Medoff;Asim Viqar;Ervin Sejdic;Murat Akcakaya;Samir F. Saba;Salah Al-Zaiti;Catalin Toma - 通讯作者:
Catalin Toma
ECG-BASED IDENTIFICATION OF INTERMEDIATE- AND HIGH-RISK PULMONARY EMBOLISM
基于心电图的中高危肺栓塞的识别
- DOI:
10.1016/s0735-1097(25)02646-4 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:22.300
- 作者:
Tanmay Gokhale;Nathan T. Riek;Brent Medoff;Ervin Sejdic;Murat Akcakaya;Samir F. Saba;Salah Al-Zaiti;Catalin Toma - 通讯作者:
Catalin Toma
Murat Akcakaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Murat Akcakaya', 18)}}的其他基金
PFI-RP: Use of Augmented Reality and Electroencephalography for Visual Unilateral Neglect Detection, Assessment and Rehabilitation in Stroke Patients
PFI-RP:使用增强现实和脑电图进行中风患者的视觉单侧忽视检测、评估和康复
- 批准号:
2234346 - 财政年份:2023
- 资助金额:
$ 78.76万 - 项目类别:
Standard Grant
CAREER: Towards a Biologically Informed Intervention for Emotionally Dysregulated Adolescents and Adults with Autism Spectrum Disorder
职业:对患有自闭症谱系障碍的情绪失调青少年和成人进行生物学干预
- 批准号:
1844885 - 财政年份:2019
- 资助金额:
$ 78.76万 - 项目类别:
Continuing Grant
CHS: Small: Collaborative Research: EEG-Guided Electrical Stimulation for Immersive Virtual Reality
CHS:小型:合作研究:脑电图引导的沉浸式虚拟现实电刺激
- 批准号:
1717654 - 财政年份:2017
- 资助金额:
$ 78.76万 - 项目类别:
Standard Grant
相似国自然基金
内源性逆转录病毒MER65-int调控人类胎
盘发育与子宫内膜重塑的功能研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
- 批准号:32370939
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
- 批准号:LQ22H160033
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
- 批准号:81903680
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
- 批准号:31800624
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
- 批准号:81371698
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
- 批准号:81100439
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2343183 - 财政年份:2023
- 资助金额:
$ 78.76万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
- 批准号:
2313481 - 财政年份:2022
- 资助金额:
$ 78.76万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
- 批准号:
10573225 - 财政年份:2021
- 资助金额:
$ 78.76万 - 项目类别:
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
- 批准号:
10392429 - 财政年份:2021
- 资助金额:
$ 78.76万 - 项目类别:
SCH: INT: Collaborative Research: Using Multi-Stage Learning to Prioritize Mental Health
SCH:INT:协作研究:利用多阶段学习优先考虑心理健康
- 批准号:
2124270 - 财政年份:2021
- 资助金额:
$ 78.76万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
- 批准号:
2014554 - 财政年份:2020
- 资助金额:
$ 78.76万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
- 批准号:
2014552 - 财政年份:2020
- 资助金额:
$ 78.76万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2019389 - 财政年份:2020
- 资助金额:
$ 78.76万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2013651 - 财政年份:2020
- 资助金额:
$ 78.76万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2013122 - 财政年份:2020
- 资助金额:
$ 78.76万 - 项目类别:
Standard Grant