Learning Latent Graphs from Stationary Signals

从平稳信号中学习潜在图

基本信息

  • 批准号:
    1915894
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

In recent years, data with many features and complicated interactions among these features and/or across time and space have become ubiquitous. How to extract meaningful information from such large complex data is one of the most pressing questions with significant scientific and societal implications. This research will generate new tools for modeling and analyzing such data through graph- or network-based representations of the data. The analytical and computational tools derived from this research can be applied to many fields including economics, finance, neuroscience, and various sub-fields within the social and biological sciences. This project will also provide training opportunities for a new generation of researchers empowering them to contribute to the rapid development of statistics, data science and related fields. Results of this research will be disseminated through publications, conference presentations, lectures, and open source software. This project will develop a novel Spectral Graph Models (SGM) framework which models multivariate data as graph-referenced stationary signals. The SGM framework provides new tools for network inference from a signal processing perspective and for modeling multivariate observations with complicated dependencies, including possible temporal or spatial dependence. It also provides new tools for covariance estimation through efficient graph-based representations. The SGM framework combines four key aspects - spectral representation of covariances, spectral graph theory, semiparametric modeling, and sparse parameterization. It allows for temporal dependency in graphs or parameters and can be used to model both independent and dependent multivariate observations. The SGM framework has a wide range of applications, and methods developed through this research will be applied to various types of data including brain activity and international trade data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,具有许多特征以及这些特征之间和/或跨时间和空间的复杂交互的数据已经变得无处不在。如何从如此庞大复杂的数据中提取有意义的信息是最紧迫的问题之一,具有重大的科学和社会影响。这项研究将产生新的工具,通过图形或基于网络的数据表示来建模和分析这些数据。 从这项研究中获得的分析和计算工具可以应用于许多领域,包括经济学,金融学,神经科学以及社会和生物科学中的各个子领域。该项目还将为新一代研究人员提供培训机会,使他们能够为统计、数据科学和相关领域的快速发展作出贡献。这项研究的结果将通过出版物,会议演示,讲座和开源软件传播。 该项目将开发一种新的谱图模型(SGM)框架,将多变量数据建模为图参考的平稳信号。SGM框架从信号处理的角度为网络推理提供了新的工具,并为具有复杂依赖性(包括可能的时间或空间依赖性)的多变量观测建模提供了新的工具。它还通过有效的基于图形的表示提供了协方差估计的新工具。SGM框架结合了四个关键方面-协方差的谱表示,谱图理论,半参数建模和稀疏参数化。它允许图形或参数的时间依赖性,并可用于建模独立和相关的多变量观测。SGM框架具有广泛的应用范围,通过该研究开发的方法将应用于包括大脑活动和国际贸易数据在内的各种数据。该奖项反映了NSF的法定使命,通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improved Shrinkage Prediction under a Spiked Covariance Structure
尖峰协方差结构下改进的收缩预测
High-Dimensional Linear Models: A Random Matrix Perspective
高维线性模型:随机矩阵视角
Sparse Equisigned PCA: Algorithms and Performance Bounds in the Noisy Rank-1 Setting
  • DOI:
    10.1214/19-ejs1657
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arvind Prasadan;R. Nadakuditi;D. Paul
  • 通讯作者:
    Arvind Prasadan;R. Nadakuditi;D. Paul
High-dimensional general linear hypothesis tests via non-linear spectral shrinkage
  • DOI:
    10.3150/19-bej1186
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Haoran Li;Alexander Aue;D. Paul
  • 通讯作者:
    Haoran Li;Alexander Aue;D. Paul
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jie Peng其他文献

Falling film on flexible wall in the limit of weak viscoelasticity
弱粘弹性极限下柔性壁上的降膜
Permutation polynomials and their differential uniformity
置换多项式及其微分均匀性
Clinical and histological characteristics of chronic hepatitis B with negative hepatitis B e-antigen.
乙型肝炎e抗原阴性的慢性乙型肝炎的临床和组织学特征。
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Jie Peng;K. Luo;Youfu Zhu;Ya;Lian Zhang;J. Hou
  • 通讯作者:
    J. Hou
Inpatient obesity intervention with postdischarge telephone follow-up: A randomized trial.
住院患者肥胖干预与出院后电话随访:一项随机试验。
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    K. Wachsberg;Amanda J. Creden;M. Workman;Abbey Lichten;A. Basil;J. Lee;Jie Peng;Mark V. Williams;R. Kushner
  • 通讯作者:
    R. Kushner
Silent information regulator 1 suppresses epithelial-to-mesenchymal transition in lung cancer cells via its regulation of mitochondria status.
沉默信息调节因子 1 通过调节线粒体状态来抑制肺癌细胞的上皮间质转化。
  • DOI:
    10.1016/j.lfs.2021.119716
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiaxin Zhang;Jie Peng;Deqin Kong;Xiang Wang;Zhao Wang;JiangzhengLiu;WeihuaYu;HaoWu;ZiLong;WeiZhang;Rui Liu;ChunxuHai
  • 通讯作者:
    ChunxuHai

Jie Peng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jie Peng', 18)}}的其他基金

Model Functional Data Through a Local FPCA Framework
通过本地 FPCA 框架对功能数据进行建模
  • 批准号:
    1007583
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Statistical Analysis for Models involving Riemannian Manifolds
涉及黎曼流形的模型的统计分析
  • 批准号:
    0806128
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Integrating subcellular multi-omics to identify druggable metabolic markers of latent HIV infection in CD4 T-cells
整合亚细胞多组学来识别 CD4 T 细胞中潜在 HIV 感染的可药物代谢标志物
  • 批准号:
    MR/Y013093/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
An investigation of generative acoustic latent representations for meeting speech recognition and summarization
用于满足语音识别和摘要的生成声学潜在表示的研究
  • 批准号:
    24K15004
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Technology to capture latent relationships using network structure and its applications
利用网络结构捕获潜在关系的技术及其应用
  • 批准号:
    23K01632
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An optical detector for latent fungal infection in produce
用于农产品中潜在真菌感染的光学检测器
  • 批准号:
    BB/X003744/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
CCSS: Uncertainty-Aware Computational Imaging in the Wild: a Bayesian Deep Learning Approach in the Latent Space
CCSS:野外不确定性感知计算成像:潜在空间中的贝叶斯深度学习方法
  • 批准号:
    2318758
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Worker Safety by Understanding Risk Compensation as a Latent Precursor of At-risk Decisions
合作研究:通过了解风险补偿作为风险决策的潜在前兆来提高工人安全
  • 批准号:
    2326937
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Project 4 - Controlling the Latent-to-Lytic Switch in Epstein-Barr Virus
项目 4 - 控制 Epstein-Barr 病毒中的潜伏至裂解转换
  • 批准号:
    10910338
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Investigating the role of long-term latent herpes simplex virus infection on APOE4-associated Alzheimer's disease pathogenesis
研究长期潜伏的单纯疱疹病毒感染对 APOE4 相关阿尔茨海默病发病机制的作用
  • 批准号:
    10740641
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Latent profiles of prenatal exposure to toxic metals and psychosocial risk and protective factors: testing associations with child developmental outcomes and moderations by caregiving experience
产前接触有毒金属和心理社会风险和保护因素的潜在特征:测试与儿童发育结果的关联以及护理经验的调节
  • 批准号:
    10606183
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
CCSS: Uncertainty-Aware Computational Imaging in the Wild: a Bayesian Deep Learning Approach in the Latent Space
CCSS:野外不确定性感知计算成像:潜在空间中的贝叶斯深度学习方法
  • 批准号:
    2348046
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了