EPCN: Enhancing the Modeling, Simulation, and Visualization of Large-Scale Electric Grids Utilizing Detailed Synthetic Power Grids and Data Sets
EPCN:利用详细的合成电网和数据集增强大规模电网的建模、仿真和可视化
基本信息
- 批准号:1916142
- 负责人:
- 金额:$ 54.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The high voltage electric grid plays a critical role in the day-to-day functioning and welfare of society, while supporting other major infrastructure as well. Tremendous research and development efforts are needed for improved grid design and operations to ensure reliability in the face of ever-changing load and generation characteristics, natural disasters, and evolving electricity markets. Electric grid research is heavily dependent upon access to high fidelity electric grid models and datasets. However, much of the crucial information about the design and operation of actual electric grids is considered confidential, and hence not publically available and often not even available to researchers in the field. The proposed project aims to meet this need by developing and applying high quality, synthetic electric grid models and datasets that represent the complexities of actual electric grids, but contain no information about real grids and hence can be made publicly available. The project results should be helpful to researchers and educators in the electric power area, and also to industry practitioners in training new engineers to solve problems facing the grid. Another important aspect of this project is the results will be made publicly available for the benefit of the many different groups of people interested in learning more about the electric grid including researchers and educations in a wide variety of different fields that depend upon the electric grid, and the public. The goal of this project is to advance research and development in many domains by providing modeling and computational analytics associated with simulations of large-scale synthetic electric grids. The modern power grid is continuously generating large volumes of data, such as from phasor measurement units (PMUs). With the right analytics and measurements, it is possible to monitor system health, detect disturbances, and predict events such as outages. The project has four main parts. First, to build on the network creation methodology with detailed modeling to allow for extended time dynamic simulations and generating realistic synthetic data. The detailed modeling will include sub-transmission networks, protection system elements, cyber infrastructure, and enhanced dynamics of system elements. Second, to leverage the synthetic grids from the first task to develop improved algorithms and models for a real-time simulation. Several new computational enhancements will be needed at this stage, with a goal being to innovate through adventurous, potentially transformative techniques that greatly extend conventional power system dynamic simulation. Third, to create synthetic and hence public data sets that reflect the complexity, and often errors, that would be obtained from actual devices such as from PMUs. Last, to take the outcomes of the first three parts and develop interactive, multi-user simulation scenarios. There will be a major education and research component to this. Improved visualization of the system parameters and results will also be explored to help with improved decision-making.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高压电网在日常运作和社会福利中起着至关重要的作用,同时也为其他主要基础设施提供支持。在面对不断变化的负荷和发电特性、自然灾害和不断变化的电力市场时,需要大量的研究和开发工作来改进电网的设计和运行,以确保可靠性。电网研究在很大程度上依赖于高保真的电网模型和数据集。然而,有关实际电网设计和运行的许多关键信息被认为是机密的,因此不能公开获取,甚至连该领域的研究人员也常常无法获得。拟议的项目旨在通过开发和应用高质量的综合电网模型和数据集来满足这一需求,这些模型和数据集代表了实际电网的复杂性,但不包含有关实际电网的信息,因此可以公开获取。该项目的研究成果应有助于电力领域的研究人员和教育工作者,也有助于行业从业者培训新的工程师来解决电网面临的问题。该项目的另一个重要方面是,研究结果将向公众公布,以使有兴趣更多地了解电网的许多不同群体受益,包括依赖电网的各种不同领域的研究人员和教育机构,以及公众。该项目的目标是通过提供与大规模合成电网模拟相关的建模和计算分析来推进许多领域的研究和开发。现代电网不断产生大量数据,如相量测量单元(pmu)。通过正确的分析和测量,可以监视系统运行状况、检测干扰并预测停机等事件。该项目有四个主要部分。首先,以详细建模的网络创建方法为基础,允许长时间动态模拟和生成真实的合成数据。详细的建模将包括子传输网络、保护系统要素、网络基础设施和增强的系统要素动态。第二,利用第一个任务的合成网格来开发改进的算法和模型,用于实时仿真。在这个阶段,需要一些新的计算增强功能,目标是通过冒险的、潜在的变革性技术进行创新,从而大大扩展传统的电力系统动态模拟。第三,创建综合和公开的数据集,这些数据集反映了从实际设备(如pmu)中获得的复杂性和经常出现的错误。最后,利用前三部分的成果,开发交互式、多用户的仿真场景。这将是一个主要的教育和研究组成部分。改进系统参数和结果的可视化也将被探索,以帮助改进决策。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Delaunay Triangulation Based Wide-Area Visualization of Electric Transmission Grids
基于 Delaunay 三角测量的输电网广域可视化
- DOI:10.1109/kpec51835.2021.9446198
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Overbye, Thomas J.;Wert, Jess;Shetye, Komal S.;Safdarian, Farnaz;Birchfield, Adam B.
- 通讯作者:Birchfield, Adam B.
Mosaic Packing to Visualize Large-Scale Electric Grid Data
- DOI:10.1109/oajpe.2020.3000464
- 发表时间:2020-01-01
- 期刊:
- 影响因子:3.8
- 作者:Birchfield, Adam B.;Overbye, Thomas J.
- 通讯作者:Overbye, Thomas J.
Techniques for Maintaining Situational Awareness During Large-Scale Electric Grid Simulations
在大规模电网仿真过程中保持态势感知的技术
- DOI:10.1109/peci51586.2021.9435245
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Overbye, Thomas J.;Shetye, Komal S.;Wert, Jess;Trinh, Wei;Birchfield, Adam;Rolstad, Tracy;Weber, James D.
- 通讯作者:Weber, James D.
Statistics for Building Synthetic Power System Cyber Models
- DOI:10.1109/peci51586.2021.9435196
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:M. Soetan;Zeyu Mao;K. Davis
- 通讯作者:M. Soetan;Zeyu Mao;K. Davis
Considerations for Interconnection of Large Power Grid Networks
大电网互联的思考
- DOI:10.1109/peci51586.2021.9435208
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Shetye, Komal S.;Overbye, Thomas J.;Li, Hanyue;Thekkemathiote, Julian;Scribner, Harvey
- 通讯作者:Scribner, Harvey
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Overbye其他文献
Thomas Overbye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Overbye', 18)}}的其他基金
SRS RN: Sustainable Transportation Electrification for an Equitable and Resilient Society (STEERS)
SRS RN:可持续交通电气化,打造公平和有弹性的社会 (STEERS)
- 批准号:
2115427 - 财政年份:2022
- 资助金额:
$ 54.88万 - 项目类别:
Standard Grant
Texas Power and Energy Conference (TPEC) Feb, 2020 Travel Proposal. To Be Held at Texas A&M University, February 6-7, 2020.
德克萨斯州电力和能源会议 (TPEC) 2020 年 2 月旅行提案。
- 批准号:
1946638 - 财政年份:2019
- 资助金额:
$ 54.88万 - 项目类别:
Standard Grant
Collaborative Proposal: Power Grid Spectroscopy
合作提案:电网光谱学
- 批准号:
1128325 - 财政年份:2011
- 资助金额:
$ 54.88万 - 项目类别:
Continuing Grant
Optimal Bidding Strategies in Transmission Limited Electric Power Markets
输电有限电力市场的最优竞价策略
- 批准号:
0080279 - 财政年份:2000
- 资助金额:
$ 54.88万 - 项目类别:
Standard Grant
New Methods for Visualization of Large-Scale Power Systems Data
大规模电力系统数据可视化的新方法
- 批准号:
9813305 - 财政年份:1998
- 资助金额:
$ 54.88万 - 项目类别:
Standard Grant
Analysis Methods for Real-Time Control of Dynamically Insecure Power Systems
动态不安全电力系统实时控制分析方法
- 批准号:
9526146 - 财政年份:1995
- 资助金额:
$ 54.88万 - 项目类别:
Standard Grant
Integrated Framework for Power System Security Assessment Using Energy Methods
使用能量方法进行电力系统安全评估的综合框架
- 批准号:
9209570 - 财政年份:1992
- 资助金额:
$ 54.88万 - 项目类别:
Standard Grant
相似海外基金
Enhancing Drug Discovery Research by Free Energy Modeling
通过自由能建模加强药物发现研究
- 批准号:
10730788 - 财政年份:2023
- 资助金额:
$ 54.88万 - 项目类别:
Enhancing evaluation of reward learning using computational modeling methods
使用计算建模方法加强奖励学习的评估
- 批准号:
10510360 - 财政年份:2022
- 资助金额:
$ 54.88万 - 项目类别:
Enhancing evaluation of reward learning using computational modeling methods
使用计算建模方法加强奖励学习的评估
- 批准号:
10683284 - 财政年份:2022
- 资助金额:
$ 54.88万 - 项目类别:
Enhancing human system performance through digital human modeling
通过数字人体建模增强人体系统性能
- 批准号:
RGPIN-2018-04483 - 财政年份:2022
- 资助金额:
$ 54.88万 - 项目类别:
Discovery Grants Program - Individual
MCA: Enhancing Discrete Fracture Network Modeling Using Evolutionary and Quantum Computing to Expand Opportunities of Convergence Research
MCA:利用进化和量子计算增强离散断裂网络建模,扩大融合研究的机会
- 批准号:
2123481 - 财政年份:2021
- 资助金额:
$ 54.88万 - 项目类别:
Standard Grant
CAREER: Enhancing Trust-Driven Human-Autonomy Interaction: Modeling Trust Dynamics and Supporting Trust Calibration
职业:增强信任驱动的人类自主交互:对信任动态进行建模并支持信任校准
- 批准号:
2045009 - 财政年份:2021
- 资助金额:
$ 54.88万 - 项目类别:
Standard Grant
Enhancing human system performance through digital human modeling
通过数字人体建模增强人体系统性能
- 批准号:
RGPIN-2018-04483 - 财政年份:2021
- 资助金额:
$ 54.88万 - 项目类别:
Discovery Grants Program - Individual
SCC-PG: Enhancing Community Engagement in Flood Mitigation Using Integrated Hydrodynamic Modeling and Multi-Scale Socio-Economic Risk Assessment
SCC-PG:利用综合水动力模型和多尺度社会经济风险评估加强社区参与防洪
- 批准号:
2125472 - 财政年份:2021
- 资助金额:
$ 54.88万 - 项目类别:
Standard Grant
Enhancing FDA's opioids systems modeling efforts to more comprehensively address fentanyl, stimulants, polysubstance use, and associated outcomes
加强 FDA 的阿片类药物系统建模工作,以更全面地解决芬太尼、兴奋剂、多物质使用和相关结果
- 批准号:
10405847 - 财政年份:2021
- 资助金额:
$ 54.88万 - 项目类别:
Enhancing human system performance through digital human modeling
通过数字人体建模增强人体系统性能
- 批准号:
RGPIN-2018-04483 - 财政年份:2020
- 资助金额:
$ 54.88万 - 项目类别:
Discovery Grants Program - Individual