Non-Convex Landscapes and High-Dimensional Latent Variable Models
非凸景观和高维潜变量模型
基本信息
- 批准号:1916198
- 负责人:
- 金额:$ 18.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In many fields of science and engineering, probabilistic latent variable models are a powerful and widely-used tool for drawing inferences from complex data. They provide a flexible framework by modeling the complexity in observed data as arising from interactions between simpler random and unobserved quantities. Latent variable models used in modern applications are often high-dimensional, and this leads to both statistical and computational challenges for inference: Surprising phenomena emerge in which structure in one latent variable can create spurious and problematic artifacts in classical inference procedures for another. These classical procedures also commonly lead to non-convex optimization problems over a large number of parameters, which are difficult to computationally solve.This research will study a flexible framework by modeling the complexity in observed data as arising from interactions between simpler random and unobserved quantities. The aim is in answering the following questions: How and why can one source of latent variation lead to artifacts in classical statistical estimates for another? What are the geometric properties of objective function landscapes in these models that render them difficult to optimize? And, can we design improved inferential procedures that correct for these artifacts and are easier to compute? The research will apply techniques from random matrix theory, free probability theory, and statistical physics to obtain a better understanding of these questions in high-dimensional settings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在许多科学和工程领域,概率潜变量模型是从复杂数据中得出推论的强大且广泛使用的工具。它们提供了一个灵活的框架,通过建模的复杂性,在观察到的数据所产生的更简单的随机和未观察到的数量之间的相互作用。现代应用中使用的潜变量模型通常是高维的,这导致了推理的统计和计算挑战:出现了令人惊讶的现象,其中一个潜变量的结构可以在经典推理过程中为另一个潜变量创建虚假和有问题的伪影。这些经典的程序也通常会导致非凸优化问题的大量参数,这是很难计算solved.This研究将研究一个灵活的框架,通过建模的复杂性,在观察到的数据之间的相互作用所产生的简单的随机和不可观测的数量。其目的是回答以下问题:如何以及为什么一个潜在的变化源导致文物在经典的统计估计为另一个?在这些模型中,目标函数景观的几何属性是什么,使得它们难以优化?而且,我们是否可以设计改进的推理程序,纠正这些文物,更容易计算?该研究将应用随机矩阵理论、自由概率论和统计物理学的技术,以更好地理解高维环境中的这些问题。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Iterative Alpha Expansion for estimating gradient‐sparse signals from linear measurements
- DOI:10.1111/rssb.12407
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Sheng Xu;Z. Fan
- 通讯作者:Sheng Xu;Z. Fan
Spectral Graph Matching and Regularized Quadratic Relaxations: Algorithm and Theory
- DOI:
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Z. Fan;Cheng Mao;Yihong Wu;Jiaming Xu
- 通讯作者:Z. Fan;Cheng Mao;Yihong Wu;Jiaming Xu
Principal components in linear mixed models with general bulk
- DOI:10.1214/20-aos2010
- 发表时间:2019-03
- 期刊:
- 影响因子:0
- 作者:Z. Fan;Yi Sun;Zhichao Wang
- 通讯作者:Z. Fan;Yi Sun;Zhichao Wang
Tree-Projected Gradient Descent for Estimating Gradient-Sparse Parameters on Graphs
- DOI:
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Sheng Xu;Z. Fan;S. Negahban
- 通讯作者:Sheng Xu;Z. Fan;S. Negahban
Surfing: Iterative optimization over incrementally trained deep networks
- DOI:
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Ganlin Song;Z. Fan;J. Lafferty
- 通讯作者:Ganlin Song;Z. Fan;J. Lafferty
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhou Fan其他文献
Large-Scale Thin CsPbBr3 Single-Crystal Film Grown on Sapphire via Chemical Vapor Deposition: Toward Laser Array Application
通过化学气相沉积在蓝宝石上生长大尺寸 CsPbBr3 单晶薄膜:面向激光阵列应用
- DOI:
10.1021/acsnano.0c06380 - 发表时间:
2020 - 期刊:
- 影响因子:17.1
- 作者:
Zhong Yangguang;Liao Kun;Du Wenna;Zhu Jiangrui;Shang Qiuyu;Zhou Fan;Wu Xianxin;Sui Xinyu;Shi Jianwei;Yue Shuai;Wang Qi;Zhang Yanfeng;Zhang Qing;Hu Xiaoyong;Liu Xinfeng - 通讯作者:
Liu Xinfeng
Identifying Brain Networks at Multiple Time Scales via Deep Recurrent Neural Network
通过深度循环神经网络识别多个时间尺度的大脑网络
- DOI:
10.1109/jbhi.2018.2882885 - 发表时间:
2019-11 - 期刊:
- 影响因子:7.7
- 作者:
Cui Yan;Zhao Shijie;Wang Han;Xie Li;Chen Yaowu;Han Junwei;Guo Lei;Zhou Fan;Liu Tianming - 通讯作者:
Liu Tianming
Effects of dietary n-3 LC-PUFA/n-6 C-18 PUFA ratio on growth, feed utilization, fatty acid composition and lipid metabolism related gene expression in black seabream, Acanthopagrus schlegelii
日粮n-3 LC-PUFA/n-6 C-18 PUFA比例对黑鲷生长、饲料利用率、脂肪酸组成及脂质代谢相关基因表达的影响
- DOI:
10.1016/j.aquaculture.2018.10.056 - 发表时间:
2019 - 期刊:
- 影响因子:4.5
- 作者:
Jin Min;Lu You;Pan Tingting;Zhu Tingting;Yuan Ye;Sun Peng;Zhou Fan;Ding Xueyan;Zhou Qicun - 通讯作者:
Zhou Qicun
Real-time monitoring of D-Ala-D-Ala dipeptidase activity of VanX in living bacteria by isothermal titration calorimetry
等温滴定量热法实时监测活菌中VanX的D-Ala-D-Ala二肽酶活性
- DOI:
10.1016/j.ab.2019.05.002 - 发表时间:
2019 - 期刊:
- 影响因子:2.9
- 作者:
Lv Miao;Zhang Yue Juan;Zhou Fan;Ge Ying;Zhao Mu Han;Liu Ya;Yang Ke Wu - 通讯作者:
Yang Ke Wu
Compressively Strained InGaAs / InGaAsP Quantum Well Distributed Feedback Laser at 1.74 micron
1.74 微米压缩应变 InGaAs / InGaAsP 量子阱分布反馈激光器
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Pan Jiao-Qing;Wang Wei;Zhu Hong-Liang;Zhao Qian;Wang Bao-Jun;Zhou Fan;Wang Lu-Feng - 通讯作者:
Wang Lu-Feng
Zhou Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhou Fan', 18)}}的其他基金
CAREER: High-dimensional inference and applications to modern biology
职业:高维推理及其在现代生物学中的应用
- 批准号:
2142476 - 财政年份:2022
- 资助金额:
$ 18.27万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Interplay between Convex and Nonconvex Optimization for Control
职业:凸和非凸优化控制之间的相互作用
- 批准号:
2340713 - 财政年份:2024
- 资助金额:
$ 18.27万 - 项目类别:
Continuing Grant
CAREER: Isoperimetric and Minkowski Problems in Convex Geometric Analysis
职业:凸几何分析中的等周和闵可夫斯基问题
- 批准号:
2337630 - 财政年份:2024
- 资助金额:
$ 18.27万 - 项目类别:
Continuing Grant
Number Theory, Potential Theory, and Convex Optimization
数论、势论和凸优化
- 批准号:
2401242 - 财政年份:2024
- 资助金额:
$ 18.27万 - 项目类别:
Standard Grant
CAREER: Harmonic Analysis, Ergodic Theory and Convex Geometry
职业:调和分析、遍历理论和凸几何
- 批准号:
2236493 - 财政年份:2023
- 资助金额:
$ 18.27万 - 项目类别:
Continuing Grant
CIF: Small: An Algebraic, Convex, and Scalable Framework for Kernel Learning with Activation Functions
CIF:小型:具有激活函数的核学习的代数、凸性和可扩展框架
- 批准号:
2323532 - 财政年份:2023
- 资助金额:
$ 18.27万 - 项目类别:
Standard Grant
Collaborative Research: Consensus and Distributed Optimization in Non-Convex Environments with Applications to Networked Machine Learning
协作研究:非凸环境中的共识和分布式优化及其在网络机器学习中的应用
- 批准号:
2240789 - 财政年份:2023
- 资助金额:
$ 18.27万 - 项目类别:
Standard Grant
Jointly convex operator perspective map having the power monotone property.
具有幂单调性质的联合凸算子透视图。
- 批准号:
23K03141 - 财政年份:2023
- 资助金额:
$ 18.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of algorithms for resouce allocation: an approach from market design and discrete convex analysis
资源分配算法分析:市场设计和离散凸分析的方法
- 批准号:
22KJ0717 - 财政年份:2023
- 资助金额:
$ 18.27万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Demystifying Deep Machine Learning Models using Convex Optimization for Reliable AI
职业:使用凸优化揭开深度机器学习模型的神秘面纱,实现可靠的人工智能
- 批准号:
2236829 - 财政年份:2023
- 资助金额:
$ 18.27万 - 项目类别:
Continuing Grant