Collaborative Research: Novel Relaxations for Cardinality-constrained Optimization Problems with Applications in Network Interdiction and Data Analysis
协作研究:基数约束优化问题的新颖松弛及其在网络拦截和数据分析中的应用
基本信息
- 批准号:1917323
- 负责人:
- 金额:$ 27.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-16 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In many fields, such as telecommunication, logistics, and genetics, a decision-maker often prefers to find a solution, where only a fraction of potential resource assignments is selected. Such solutions are easier to interpret and implement, but they may be difficult to identify. Leveraging new structural results, the investigators develop new techniques to obtain high quality solutions to these types of problems. This project will apply these techniques to data analysis and network interdiction problems. Network interdiction models have been successfully used to identify vulnerabilities in power and water systems, and to secure networked systems. Improved methods will help create better predictive models and yield tools to enhance national security. This research will also support training of graduate and undergraduate students and creation of pedagogical material.This project seeks to develop new convex relaxation techniques that will lead to stronger relaxation bounds for cardinality constrained mathematical programs (CCMPs) and improve the convergence of generic and custom branch-and-bound codes for mixed integer nonlinear programs. Specifically, the researchers will (i) investigate bilinear formulations of cardinality requirements through the lens of the recently developed convexification procedures; (ii) focus on disjunctive relaxations previously introduced for linear relaxations of CCMPs, which can be used to generate cuts from any simplex basic solution that does not satisfy a cardinality constraint; (iii) develop cutting plane strategies that can generate convex hull descriptions devised from extensions of reformulation-linearization techniques; and (iv) utilize the concept of permutation-invariance to develop new formulations and relaxations for CCMPs arising in data analysis and models of various logical propositions. The project will also investigate the application of these results to the KKT formulation of network interdiction with asymmetric information. The investigators will also make use of these improved relaxations in the development of heuristic and exact solution techniques for sparse principal component analysis.
在许多领域,如电信、物流和遗传学,决策者往往倾向于寻找解决方案,在这种方案中,只选择了潜在资源分配的一小部分。这样的解决方案更容易解释和实施,但可能很难识别。利用新的结构结果,调查人员开发了新的技术,以获得这些类型问题的高质量解决方案。该项目将把这些技术应用于数据分析和网络阻断问题。网络阻断模型已成功地用于识别电力和供水系统中的漏洞,并确保联网系统的安全。改进的方法将有助于创建更好的预测模型和收益工具,以增强国家安全。这项研究还将支持研究生和本科生的培训以及教学材料的创建。本项目旨在开发新的凸松弛技术,从而为基数约束数学规划(CCMP)带来更强的松弛界,并改善混合整数非线性规划的通用和定制分支定界代码的收敛。具体地说,研究人员将(I)通过最近发展的凸化过程的透镜来研究基数要求的双线性公式;(Ii)专注于先前为CCMP的线性松弛引入的析取松弛,它可以用于从任何不满足基数约束的单纯形基本解生成割集;(Iii)开发割平面策略,该策略可以通过重新公式线性化技术的扩展来生成凸壳描述;以及(Iv)利用置换不变性的概念来为在数据分析和各种逻辑命题的模型中产生的CCMP开发新的公式和松弛。该项目还将研究这些结果在非对称信息网络阻断的KKT公式中的应用。研究人员还将利用这些改进的松弛来开发用于稀疏主成分分析的启发式和精确解技术。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On cutting planes for cardinality-constrained linear programs
关于基数约束线性规划的割平面
- DOI:10.1007/s10107-018-1306-0
- 发表时间:2018
- 期刊:
- 影响因子:2.7
- 作者:Kim, Jinhak;Tawarmalani, Mohit;Richard, Jean-Philippe P.
- 通讯作者:Richard, Jean-Philippe P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jean-Philippe Richard其他文献
Jean-Philippe Richard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jean-Philippe Richard', 18)}}的其他基金
D-ISN/Collaborative Research: Disrupting West Virginia's Opioid Crisis: a Multi-disciplinary Approach through Interdiction and Harm Reduction
D-ISN/合作研究:扰乱西弗吉尼亚州的阿片类药物危机:通过拦截和减少危害采取多学科方法
- 批准号:
2240361 - 财政年份:2023
- 资助金额:
$ 27.52万 - 项目类别:
Standard Grant
Collaborative Research: Novel Relaxations for Cardinality-constrained Optimization Problems with Applications in Network Interdiction and Data Analysis
协作研究:基数约束优化问题的新颖松弛及其在网络拦截和数据分析中的应用
- 批准号:
1728031 - 财政年份:2017
- 资助金额:
$ 27.52万 - 项目类别:
Standard Grant
Collaborative Research: Novel Tighter Relaxations for Complementarity Constraints with Applications to Nonlinear and Bilevel Programming
协作研究:互补约束的新颖更严格松弛及其在非线性和双层规划中的应用
- 批准号:
1235236 - 财政年份:2012
- 资助金额:
$ 27.52万 - 项目类别:
Standard Grant
New Modeling and Solution Paradigms for Transportation Problems with Applications to Railroads
运输问题的新建模和解决方案及其在铁路中的应用
- 批准号:
1200616 - 财政年份:2012
- 资助金额:
$ 27.52万 - 项目类别:
Standard Grant
Collaborative Research: Generating Stronger Cuts for Nonlinear Programs Via Orthogonal Disjunctions and Lifting Techniques
协作研究:通过正交析取和提升技术为非线性程序生成更强的削减
- 批准号:
0856605 - 财政年份:2009
- 资助金额:
$ 27.52万 - 项目类别:
Standard Grant
CAREER: Improving the Optimization and Re-Optimization of Mixed Integer Programs through the Study of Continuous Variables
职业:通过连续变量的研究改进混合整数程序的优化和重新优化
- 批准号:
0958824 - 财政年份:2009
- 资助金额:
$ 27.52万 - 项目类别:
Continuing Grant
CAREER: Improving the Optimization and Re-Optimization of Mixed Integer Programs through the Study of Continuous Variables
职业:通过连续变量的研究改进混合整数程序的优化和重新优化
- 批准号:
0348611 - 财政年份:2004
- 资助金额:
$ 27.52万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347992 - 财政年份:2024
- 资助金额:
$ 27.52万 - 项目类别:
Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347991 - 财政年份:2024
- 资助金额:
$ 27.52万 - 项目类别:
Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
- 批准号:
2346198 - 财政年份:2024
- 资助金额:
$ 27.52万 - 项目类别:
Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
- 批准号:
2346197 - 财政年份:2024
- 资助金额:
$ 27.52万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312872 - 财政年份:2023
- 资助金额:
$ 27.52万 - 项目类别:
Standard Grant
Collaborative Research: IHBEM: The fear of here: Integrating place-based travel behavior and detection into novel infectious disease models
合作研究:IHBEM:这里的恐惧:将基于地点的旅行行为和检测整合到新型传染病模型中
- 批准号:
2327797 - 财政年份:2023
- 资助金额:
$ 27.52万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
- 批准号:
2324033 - 财政年份:2023
- 资助金额:
$ 27.52万 - 项目类别:
Standard Grant
Collaborative Research: Enhanced Photolysis and Advanced Oxidation Processes by Novel KrCl* (222 nm) Irradiation
合作研究:通过新型 KrCl* (222 nm) 辐照增强光解和高级氧化过程
- 批准号:
2310137 - 财政年份:2023
- 资助金额:
$ 27.52万 - 项目类别:
Standard Grant
Collaborative Research: Magnetic Clustering using Novel Poly(amino acid) Corrals to Advance Magnetic Particle Imaging
合作研究:利用新型聚氨基酸畜栏进行磁聚类以推进磁粒子成像
- 批准号:
2305404 - 财政年份:2023
- 资助金额:
$ 27.52万 - 项目类别:
Standard Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
- 批准号:
2219796 - 财政年份:2023
- 资助金额:
$ 27.52万 - 项目类别:
Standard Grant