Collaborative Research: Generating Stronger Cuts for Nonlinear Programs Via Orthogonal Disjunctions and Lifting Techniques
协作研究:通过正交析取和提升技术为非线性程序生成更强的削减
基本信息
- 批准号:0856605
- 负责人:
- 金额:$ 20.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The award is funded under American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The expressive power of nonlinear programs allows the formulation of a remarkable number of application problems from business, science, engineering, and economics. In the presence of nonconvexity, global optimization of such programs poses unmistakable challenges. The objective of this project is to explore how lifting and orthogonal disjunctions can generate computationally tractable cutting planes and convex relaxations for nonlinear programs. The proposed research departs from existing techniques in two crucial dimensions. First, instead of relaxing the left-hand-side and right-hand-side of an inequality independently of each other, tighter relaxations are derived by considering them simultaneously. Second, the techniques do not add new variables, a feature with obvious computational advantages over existing approaches. The objective is to (i) derive, preferably in closed-form, new strong cuts or relaxations for commonly occurring nonlinear structures in areas such as process design and bi-clustering, (ii) characterize structures of nonconvex inequalities where the proposed techniques yield provably tight relaxations, and (iii) design computational procedures that automatically generate strong cuts and evaluate the impact of integrating them in a branch-and-bound algorithm. If successful, this project will provide an impetus to theoretical, algorithmic, and computational advances in deterministic global optimization through research on convexification procedures. A significant expected outcome of this research project is the improvement of the branch-and-bound algorithm for nonconvex programs through the derivation of new and stronger convex relaxations. This project will invigorate the research at the interface of integer programming and global optimization and benefit both communities. The proposed relaxation schemes will be implemented in software enabling the solution of larger nonconvex problems, which, in turn, will impact many application contexts in science, engineering, business, and economics. Work on solving specially-structured problems will bring operational efficiencies in those contexts.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。非线性程序的表达能力允许从商业、科学、工程和经济学中制定大量的应用问题。在存在非凸性的情况下,全局优化这类程序提出了明确的挑战。该项目的目标是探索提升和正交析取如何为非线性程序生成可计算的切割平面和凸松弛。拟议的研究在两个关键方面偏离了现有技术。首先,而不是放松的左手边和右手边的不等式相互独立,更严格的放松,同时考虑他们。其次,该技术不添加新的变量,这一特征与现有方法相比具有明显的计算优势。目标是(i)最好以封闭形式导出在诸如过程设计和双聚类等领域中常见的非线性结构的新的强切割或松弛,(ii)表征非凸不等式的结构,其中所提出的技术产生可证明的紧松弛,和(iii)设计计算程序,自动生成强切割,并评估将它们集成到分支中的影响,定界算法如果成功的话,这个项目将通过对凸化过程的研究,为确定性全局优化的理论、算法和计算进步提供动力。一个重要的预期成果,这个研究项目是改进的分支定界算法的非凸规划,通过推导新的和更强的凸松弛。该项目将激发整数规划和全局优化接口的研究,并使两个社区受益。所提出的松弛方案将在软件中实现,从而能够解决更大的非凸问题,这反过来将影响科学,工程,商业和经济学中的许多应用环境。解决特殊结构问题的工作将在这些情况下带来运营效率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jean-Philippe Richard其他文献
Jean-Philippe Richard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jean-Philippe Richard', 18)}}的其他基金
D-ISN/Collaborative Research: Disrupting West Virginia's Opioid Crisis: a Multi-disciplinary Approach through Interdiction and Harm Reduction
D-ISN/合作研究:扰乱西弗吉尼亚州的阿片类药物危机:通过拦截和减少危害采取多学科方法
- 批准号:
2240361 - 财政年份:2023
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
Collaborative Research: Novel Relaxations for Cardinality-constrained Optimization Problems with Applications in Network Interdiction and Data Analysis
协作研究:基数约束优化问题的新颖松弛及其在网络拦截和数据分析中的应用
- 批准号:
1917323 - 财政年份:2018
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
Collaborative Research: Novel Relaxations for Cardinality-constrained Optimization Problems with Applications in Network Interdiction and Data Analysis
协作研究:基数约束优化问题的新颖松弛及其在网络拦截和数据分析中的应用
- 批准号:
1728031 - 财政年份:2017
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
Collaborative Research: Novel Tighter Relaxations for Complementarity Constraints with Applications to Nonlinear and Bilevel Programming
协作研究:互补约束的新颖更严格松弛及其在非线性和双层规划中的应用
- 批准号:
1235236 - 财政年份:2012
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
New Modeling and Solution Paradigms for Transportation Problems with Applications to Railroads
运输问题的新建模和解决方案及其在铁路中的应用
- 批准号:
1200616 - 财政年份:2012
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
CAREER: Improving the Optimization and Re-Optimization of Mixed Integer Programs through the Study of Continuous Variables
职业:通过连续变量的研究改进混合整数程序的优化和重新优化
- 批准号:
0958824 - 财政年份:2009
- 资助金额:
$ 20.27万 - 项目类别:
Continuing Grant
CAREER: Improving the Optimization and Re-Optimization of Mixed Integer Programs through the Study of Continuous Variables
职业:通过连续变量的研究改进混合整数程序的优化和重新优化
- 批准号:
0348611 - 财政年份:2004
- 资助金额:
$ 20.27万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EPIIC: Generating Regional Innovative Partnerships (GRIP)
合作研究:EPIIC:建立区域创新伙伴关系(GRIP)
- 批准号:
2331583 - 财政年份:2023
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
Collaborative Research: EPIIC: Generating Regional Innovative Partnerships (GRIP)
合作研究:EPIIC:建立区域创新伙伴关系(GRIP)
- 批准号:
2331585 - 财政年份:2023
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
Collaborative Research: EPIIC: Generating Regional Innovative Partnerships (GRIP)
合作研究:EPIIC:建立区域创新伙伴关系(GRIP)
- 批准号:
2331584 - 财政年份:2023
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
Collaborative Research: EPIIC: Generating Regional Innovative Partnerships (GRIP)
合作研究:EPIIC:建立区域创新伙伴关系(GRIP)
- 批准号:
2331582 - 财政年份:2023
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
Collaborative Research: EPIIC: Generating Regional Innovative Partnerships (GRIP)
合作研究:EPIIC:建立区域创新伙伴关系(GRIP)
- 批准号:
2331586 - 财政年份:2023
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
Collaborative Research: GCR: Generating Actionable Research to Investigate Combined Climate Intervention Strategies for Stakeholder Use
合作研究:GCR:生成可行的研究来调查供利益相关者使用的综合气候干预策略
- 批准号:
2218785 - 财政年份:2022
- 资助金额:
$ 20.27万 - 项目类别:
Continuing Grant
Collaborative Research: CAS - Climate: Improving Nonstationary Intensity-Duration-Frequency Analysis of Extreme Precipitation by Advancing Knowledge on the Generating Mechanisms
合作研究:CAS - 气候:通过增进对生成机制的认识来改进极端降水的非平稳强度-持续时间-频率分析
- 批准号:
2221803 - 财政年份:2022
- 资助金额:
$ 20.27万 - 项目类别:
Standard Grant
Collaborative Research: GCR: Generating Actionable Research to Investigate Combined Climate Intervention Strategies for Stakeholder Use
合作研究:GCR:生成可行的研究来调查供利益相关者使用的综合气候干预策略
- 批准号:
2218777 - 财政年份:2022
- 资助金额:
$ 20.27万 - 项目类别:
Continuing Grant
Collaborative Research: GCR: Generating Actionable Research to Investigate Combined Climate Intervention Strategies for Stakeholder Use
合作研究:GCR:生成可行的研究来调查供利益相关者使用的综合气候干预策略
- 批准号:
2218779 - 财政年份:2022
- 资助金额:
$ 20.27万 - 项目类别:
Continuing Grant
Collaborative Research: GCR: Generating Actionable Research to Investigate Combined Climate Intervention Strategies for Stakeholder Use
合作研究:GCR:生成可行的研究来调查供利益相关者使用的综合气候干预策略
- 批准号:
2218758 - 财政年份:2022
- 资助金额:
$ 20.27万 - 项目类别:
Continuing Grant