CAREER: Improving the Optimization and Re-Optimization of Mixed Integer Programs through the Study of Continuous Variables

职业:通过连续变量的研究改进混合整数程序的优化和重新优化

基本信息

  • 批准号:
    0348611
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-02-15 至 2009-09-30
  • 项目状态:
    已结题

项目摘要

This Faculty Early Career Development (CAREER) research proposes to develop new methodologies for the optimization and e-optimization of mixed integerprograms through the study of the particular nature of continuous variables. The premise is that continuous variables are an important source of difficulty in the solution of mixed integer programs that is often ignored. A better understanding of their specificity will yield improved methods for the optimization of mixed integer programs. The approach proposed consists in the development of a general theory for the lifting of continuous variables. This theory will be applied to enhance various standard branch-and-cut features (linear programming-based heuristic, cutting planes) and less traditional methods (primal algorithms). It will also be applied to the design of computationally efficient e-optimization techniques for mixed integer programs. Computational experiments will be carried out to validate the approaches on practical problems. If successful, this project will result in the improvement of the capabilities and performance of the current mixed integer programming technologies. It will yield general-purpose software capable of solving time-consuming problems more efficiently and capable of solving intractable problems. The benefactors of these improvements are in virtually all sectors of the economy including finance, forestry, and manufacturing. It will yield software with built-in capabilities to perform efficient scenario-based analysis of optimal solutions. These improved features are essential in an environment where decision problems are considered more globally and where uncertainty is omni-present. Through its educational component, this research project will provide a reference accessible to practitioners about how, when general-purpose software fails, to solve problems with the most advanced mixed integer programming technologies.
本学院早期职业发展(Career)研究建议通过研究连续变量的特殊性质来开发混合积分方案的优化和e-优化的新方法。前提是连续变量是求解混合整数规划时经常被忽略的一个重要困难来源。更好地理解它们的特殊性将为混合整数规划的优化提供改进的方法。所提出的方法包括对连续变量提升的一般理论的发展。该理论将应用于增强各种标准的分支和切割特征(基于线性规划的启发式,切割平面)和不太传统的方法(原始算法)。它还将应用于混合整数程序的计算效率e-优化技术的设计。计算实验将在实际问题上验证这些方法。如果成功,该项目将导致当前混合整数规划技术的能力和性能的改进。它将产生通用软件,能够更有效地解决耗时的问题,并能够解决棘手的问题。这些改善的受益者几乎遍及经济的所有部门,包括金融、林业和制造业。它将产生具有内置功能的软件,以执行有效的基于场景的最佳解决方案分析。这些改进的特性在一个更全局地考虑决策问题和不确定性无处不在的环境中是必不可少的。通过它的教育成分,这个研究项目将为实践者提供一个可访问的参考,当通用软件失败时,如何用最先进的混合整数编程技术解决问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jean-Philippe Richard其他文献

Jean-Philippe Richard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jean-Philippe Richard', 18)}}的其他基金

D-ISN/Collaborative Research: Disrupting West Virginia's Opioid Crisis: a Multi-disciplinary Approach through Interdiction and Harm Reduction
D-ISN/合作研究:扰乱西弗吉尼亚州的阿片类药物危机:通过拦截和减少危害采取多学科方法
  • 批准号:
    2240361
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Novel Relaxations for Cardinality-constrained Optimization Problems with Applications in Network Interdiction and Data Analysis
协作研究:基数约束优化问题的新颖松弛及其在网络拦截和数据分析中的应用
  • 批准号:
    1917323
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Novel Relaxations for Cardinality-constrained Optimization Problems with Applications in Network Interdiction and Data Analysis
协作研究:基数约束优化问题的新颖松弛及其在网络拦截和数据分析中的应用
  • 批准号:
    1728031
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Novel Tighter Relaxations for Complementarity Constraints with Applications to Nonlinear and Bilevel Programming
协作研究:互补约束的新颖更严格松弛及其在非线性和双层规划中的应用
  • 批准号:
    1235236
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
New Modeling and Solution Paradigms for Transportation Problems with Applications to Railroads
运输问题的新建模和解决方案及其在铁路中的应用
  • 批准号:
    1200616
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Generating Stronger Cuts for Nonlinear Programs Via Orthogonal Disjunctions and Lifting Techniques
协作研究:通过正交析取和提升技术为非线性程序生成更强的削减
  • 批准号:
    0856605
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Improving the Optimization and Re-Optimization of Mixed Integer Programs through the Study of Continuous Variables
职业:通过连续变量的研究改进混合整数程序的优化和重新优化
  • 批准号:
    0958824
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SBIR Phase II: Improving fleet operational metrics through service optimization with automated learning of vehicle energy performance models for zero-emission public transport
SBIR 第二阶段:通过服务优化和自动学习零排放公共交通的车辆能源性能模型来改善车队运营指标
  • 批准号:
    2220811
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
Improving Optimization-Based Scheduling and Path Planning Decision Support: An Artificial Intelligence and Operations Research Approach With Applications to Surveillance and Search
改进基于优化的调度和路径规划决策支持:一种应用于监视和搜索的人工智能和运筹学方法
  • 批准号:
    RGPIN-2021-03495
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Improving Healthcare Systems' Performance during Mass Casualty Incidents using a Simulation, Optimization, and Machine Learning approach
使用模拟、优化和机器学习方法提高大规模伤亡事件期间医疗保健系统的性能
  • 批准号:
    2750907
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Improving global optimization methods for dynamic process models
改进动态过程模型的全局优化方法
  • 批准号:
    RGPIN-2017-05944
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Optimization techniques and software architectures for improving scalability of description logic reasoners
用于提高描述逻辑推理器可扩展性的优化技术和软件架构
  • 批准号:
    RGPIN-2019-05526
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Optimization techniques and software architectures for improving scalability of description logic reasoners
用于提高描述逻辑推理器可扩展性的优化技术和软件架构
  • 批准号:
    RGPIN-2019-05526
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Digital Health: OptiMuscle - Improving health outcomes through the optimization of muscle function
数字健康:OptiMuscle - 通过优化肌肉功能改善健康结果
  • 批准号:
    EP/W003600/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Improving global optimization methods for dynamic process models
改进动态过程模型的全局优化方法
  • 批准号:
    RGPIN-2017-05944
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Optimization of Sampling Design For Predictive Digital Soil Mapping: Reducing Uncertainty, Improving Predictions and Gaining Efficiencies in Sampling Programs
预测数字土壤测绘的采样设计优化:减少不确定性、改进预测并提高采样计划的效率
  • 批准号:
    535671-2019
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Improving Optimization-Based Scheduling and Path Planning Decision Support: An Artificial Intelligence and Operations Research Approach With Applications to Surveillance and Search
改进基于优化的调度和路径规划决策支持:一种应用于监视和搜索的人工智能和运筹学方法
  • 批准号:
    RGPIN-2021-03495
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了